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 The phenomenon of thermoelectric energy conversion holds great promise in harvesting wasted heat 

and improving thermal energy management. This technology, however, is not widely used due to its 

generally poor efficiency stemming from intrinsic material-level limitations.  This dissertation proposes to 

utilize the concepts of phononic crystals and metamaterials at the nanoscale in order to manipulate 

phonon lattice vibrations in a manner that qualitatively alters the thermal transport mechanisms and 

improves the thermoelectric energy conversion figure-of-merit. Phononic crystals utilize Bragg scattering 

while metamaterials use subwavelength properties to manipulate wave propagation in an elastic medium.  

With the advent of the nanotechnology revolution, the ability to fabricate material systems with 

nanostructured geometric features renders the concepts promised practically feasible. 

 First, a Lagrangian formulation is derived to obtain the phonon dispersion spectrum of nanophononic 

crystals (NPCs) based on a simple three-dimensional mass-spring model. The formulation is then used to 

examine the opening of frequency band gaps due to the introduction of point-mass lattice defects. 

 Next, models of silicon utilizing the Tersoff inter-atomic potential are then developed with a focus 

on investigating the effects of incorporating the full dispersion characteristics of 3D NPCs. The role that 

dispersion plays in shaping the nonlinear scattering properties as well as the thermal conductivity of the 

nanostructured material as a whole is thoroughly investigated. The results show that for relatively small 

voids and void spacing–where boundary scattering is dominant–dispersion at the NPC unit cell level 

plays a noticeable role in determining the thermal conductivity.  

 Finally, the focus shifts to 2D thin-films which has significant differences in the phonon band 

structure and exhibits lower values of thermal conductivity. A thorough modeling scheme is proposed that 

provides substantially more accurate results compared to the conventional formulation, which uses bulk 

dispersion in the prediction of the phonon thermal conductivity. The results show that the thin-film full 

dispersion model better fits with the experimental data over a large temperature range.  Finally, features 

are added to the thin-film forming a nanoscale phononic metamaterial–a novel concept that yields further 

reduction in thermal conductivity and potentially a substantial improvement in the thermoelectric figure-

of-merit.  
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1 INTRODUCTION 

 The pursuit of efficient energy generation and consumption is perhaps one of the most significant 

challenges facing our global community today.  In this modern era, energy consumption in the form of 

electricity is central to our economic activity and is fundamentally tied to improving the societal quality 

of life. There are, however, growing concerns that the increasing demand for energy coupled with 

dwindling resources and adverse environmental impacts are limiting economic growth.  Hence, the ability 

to increase efficiency of power generation and consumption is of paramount importance. 

 One prominent direction for improving electric power generation is through thermoelectric energy 

conversion, or the process of converting energy in the form of heat into electricity and vice-versa.  This 

solid-state process is attractive as most of the world’s electricity is generated from heat energy. 

Furthermore, the established paradigm for efficient conversion from heat into electricity involves 

mechanical motion of some sort (i.e., spinning turbines) and is therefore inherently limited in its potential 

for drastic improvements in efficiency.  Many concepts exist that utilize thermoelectric materials to 

harvest excess heat within power plants or to more ideally replace the need for mechanical motion all 

together.  While intense research has been underway to advance and integrate thermoelectric devices for 

common uses, their relatively poor efficiency remains a major hurdle.  Today these devices only exist 

within a few niche markets where efficiency is not a primary concern, such as portable heat and 

refrigeration devices or for radioisotope thermoelectric generators (RTGs) often used in spacecraft where 

solar power generation is not advantageous. 

 With the advent of the nanotechnology revolution, a new focus surrounding thermoelectric devices 

utilizing nanostructured materials has emerged with great promise. This dissertation seeks to explore new 

avenues in this area of research.   
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 Introduction to Thermoelectric Materials 1.1

 The thermoelectric effect, or the solid-state conversion of heat and electricity, occurs due to the 

difference in electric charge carrier transport of two conjoined materials.  The intrinsic measure of how 

well these carriers diffuse with temperature is known as the Seebeck coefficient and is one of the primary 

indicators of thermoelectric performance.  When joining two dissimilar metals together, an applied 

thermal gradient on the device will induce a voltage that is proportional to the difference of the Seebeck 

coefficients for the two metals and the applied temperature across the device.  Semiconductor materials 

are found to have some of the highest known Seebeck coefficients and are primarily used in commercial 

devices.  In Figure 1.1, a schematic of a common thermoelectric device is portrayed utilizing two doped 

semiconductor materials of both n-type and p-type.  Here we see the Seebeck Effect (left) in which an  

 

Figure 1.1: A schematic of a common thermoelectric device consisting of two different 
semiconductors.  The conversion of heat into energy, otherwise known as the Seebeck Effect, 
is shown on the right while the reversible process known as the Peltier Effect is shown on the 
left.   

applied temperature gradient induces a current and the reversible process known as the Peltier Effect 

(right) in which an applied power source induces a temperature gradient.  On the left side of this 

schematic, a heat source is applied at the top (red) and the heat sink or cold surface is applied at the 

bottom (blue).  The resulting thermal gradient across the materials causes a net flow of electrons in the n-

type semiconductor and holes (i.e., electron absence as a charge carrier) in the p-type to diffuse towards 
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the cold surface.  This creates a net voltage potential and hence an applied current load on the resister 

shown in the schematic.  This process can also be reversed by eliminating the temperature gradient and 

replacing the resister with a power source as shown in the left side of Figure 1.1.  The implied power 

creates a heat pump in which energy is absorbed at the top (blue) and dissipated at bottom (red). 

 The performance of a thermoelectric material is commonly measured by the figure-of-merit, Z, 

multiplied by the average temperature, T, across the device.  The relationship of ZT with respect to the 

Seebeck coefficient, S, electrical conductivity, σ, and thermal conductivity k is:   

 T
k

S
ZT

2
  (1.1) 

As discussed above, an improved Seebeck coefficient leads to increased performance.  In addition, an 

improved electrical conductivity leads to more electron mobility and less resistance for the flow path of 

electrons thus improving the figure-of-merit.  Finally, a reduced thermal conductivity in the materials 

across the thermal path allows for a greater thermal gradient and hence a higher ZT. Current ZT 

measurements of thermoelectric devices utilizing bulk materials hover just above 1 or roughly 10% 

efficiency [Pichanusakorn and Bandaru, 2010].  It has been hypothesized that a figure-of-merit greater 

than 3 is needed in order to make the technology of solid state thermoelectric devices a competitive 

alternative approach to energy conversion within industry, as stated by Vineis et al. [2010]. 

1.1.1 Challenges with Thermoelectric Materials 

 The 1950s was a period of remarkable advances in thermoelectrics.  Most notable was the 

incorporation of semiconductor materials and the development of the Bi2Te3 alloy, which led to the first 

integrated commercial uses of thermoelectric devices for niche markets [Goldsmid and Douglas, 1954].  

However, despite these improvementswhich mainly focused on incorporating bulk materials into 
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thermoelectricsthe figure-of-merit effectively stagnated around ZT = 1, a value too low to be competitive 

with existing power generating and fluid-based refrigeration technologies in industry.  

 The difficulty in increasing efficiency utilizing bulk materials stems from the intrinsic inter-

connection between the three variables determining the figure-of-merit.  Utilizing techniques to improve 

one variable such as electron doping or the incorporation of impurities inherently manipulates the 

remaining variables in a manner that nullifies the benefits.  The following are two prominent conflicts:  

1) Thermal and electrical conductivity: both electrons and phonons (i.e., lattice vibrations) 

contribute to the thermal conductivity of a material.  Since the intention is to increase 

the electrical conductivity while decreasing the thermal conductivity one must turn to 

manipulating phonons to increase the figure-of-merit.  A common practice to inhibit 

phonons in bulk materials is to increase nonlinear wave scattering by incorporating 

random defects or impurities into the material.  This however also leads to an increase in 

electron scattering thus tends to cancel out the benefits of lowering the thermal 

conductivity. 

2) Seebeck and electrical conductivity:  The electrical conductivity increases as the 

intensity of electron scattering decreases. However, this is contrary to the Seebeck 

coefficient which depends on disorder to enable electron diffusion.  On a related note, 

one avenue for significantly improving the electrical conductivity in a semiconductor is 

through electron doping.  However, addition of more electrons saturates the material and 

hence inhibits its Seebeck properties, thus cancelling out the benefits of raising the 

electrical conductivity.   

 Over the following three decades, these noted challenges arguably led to a period of relative 

inactivity and subdued interest in the field.  It was not until the early 1990s when the focus reemerged 

after a series of studieswith one of the most notable by Hicks and Dresselhaus [1993] which suggested 
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that vast improvements in the figure-of-merit could be achieved by using nanoscale techniques to 

independently control electron and phonon transport.  The idea initially focused on incorporating 

nanostructured devices to confine the electron flow through a material thus increasing the Seebeck 

coefficient and electrical conductivity.  This concept was later applied to thermal transport with more 

success by G. Chen [1998] and others with a baseline idea of using low dimensional and/or layered 

materials to specifically scatter phonons with as little interference as possible to the electron transport.  

During this development it was found that improvements to electron transport and the Seebeck coefficient 

were limited and, as a result, greater focus transitioned to reducing the thermal conductivity to improve 

ZT [Dresselhaus et al., 2007].  The idea of nanostructuring has led to a resurgence in thermoelectrics.  

Today, research in the field is being pursued globally with a wide variety of approaches in analytical 

modeling, fabrication and experimental testing. 

1.1.2 Recent Advancements in Thermoelectrics 

 At present, there are two main approaches focused on the idea of inhibiting phonon transport in 

thermoelectrics.  The first continues with the traditional track of utilizing bulk materials with complex 

crystalline microstructures.  This work mainly focuses on a class of materials which contain a highly 

regular lattice structure with loosely bounded atoms or ‘rattlers’.  Several materials with these atomic 

scatterers have been documented to benignly scatter phonons with minimal impact on the electron 

transport.  Skutterudites and clathrates are a class of materials that contain a strong cage-like core and can 

trap atoms or molecules inside to act as scatterers. Recent studies by Nolas et al. [1999] and Kleinke 

[2010] look at the feasibility of utilization of these materials for thermoelectric energy conversion and the 

realization of an improved figure-of-merit.  Li et al. [2010] reviews a series of bulk thermoelectric 

materials and notes how the peak performance is approaching a ZT = 1.5 for a diverse group of materials 

at select temperatures.   
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 The second focus area aims to use a superlattice (i.e., layered medium) configuration and/or low 

dimensional materials such as thin-films, nanowires and quantum dots to confine the electron transport 

and control the dispersion Balandin and Wang [1998] and scattering of thermal conductivity.  There are a 

few studies of particular note:  Venkatasubramanian et al. [2001] reported a ZT = 2.4 when utilizing thin-

film superlattices with ultra-thin periodic layering (~1nm) of Bi2Te3/Sb2Te3 at room temperature.  Harman 

et al. [2005] measured an even larger improvement, a ZT = 3, utilizing quantum dot superlattices of 

PbSeTe/PbTe at high temperatures.  In the field of low dimensional materials, recent measurements of ZT 

for silicon nanowires have received much attention.  Boukai et al. [2008] measured a ZT = 1 (a 100-fold 

improvement over bulk) while Hochbaum et al. [2008] had similar findings (ZT = 1) for nanowires with 

rough surfaces. 

 Despite the dramatic measurements of improved figure-of-merit for these nanostructured devices, 

there remain a few key difficulties/areas for improvements.  It should be noted that a thermoelectric 

device requires both an n-type and p-type semiconductor material to function; as a result the reported ZT 

of a particular material does not represent the performance of the entire thermoelectric device.  In 

addition, the complex fabrication techniques and experimental setup to measure ZT make it difficult for 

independent confirmation from other research groups.  Snyder and Toberer [2008] have compiled a 

review which details further difficulties of ZT measurement accuracy.  Another issue is concerned with 

the manufacturing complexity and delicate nature of these nanostructured devices, which makes it 

difficult to incorporate the technologies into wide-scale commercial use.  As a result, there is an effort to 

embed superlattice and low-dimensional materials into a bulk setting.  As pointed out by Dresselhaus et 

al. [2007], the two main approaches (utilization of bulk and nanostructured materials) which have grown 

apart over in the past are on the verge of coming back together as the future of thermoelectric devices 

may be centered on integrated devices.  
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 Introduction to Phononic Materials 1.2

 In this work, we are particularly interested in a new class of artificial materials that may be referred 

to as “phononic materials”.  Phononic materials may be divided into two categories: phononic crystals 

and acoustic metamaterials. In the following sections, an introduction is given on each of these two types 

of very promising materials.  

1.2.1 Phononic Crystals 

 Phononic crystals (PC; a subclass of phononic materials) are synthetic elastic materials that by nature 

of their spatial periodicity exhibit unique properties concerning wave propagation. A primitive unit cell is 

the most basic construction of a PC; it is repeated in an orderly fashion essentially following the standard 

rules of crystallography. With careful selection of the intrinsic geometric and constituent material 

properties, wave scattering occurs at the periodic boundaries enabling wave interferences. The resulting 

dispersion relation effectively summarizes these wave interference mechanisms which, depending on the 

frequency, could be constructive (causing propagation) or destructive (causing attenuation).  Of particular 

interest in a dispersion relation (also referred to as a frequency band structure) is the possibility of 

existence of a band gap or a frequency range in which waves cannot propagate. With proper tuning of the 

primitive unit cell, a PC can exhibit large band gaps enabling the design of materials with inherent 

dynamical filtering and waveguiding (among other) properties.  

 At the macro scale (μm-m) the dynamical characteristics of PCs lead to applications such as 

vibration isolators, radio frequency sensors, and imaging devices. In this size regime, PCs are commonly 

modeled as a continuum where a numerical discretization technique such as the finite element method is 

employed, or as a lumped parameter model with masses and springs to roughly represent a continuous 

configuration.  
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1.2.2 Acoustic Metamaterials 

 Acoustic metamaterials represent another type of PnMs; they are also periodic materials except they 

differ from PCs in that they exhibit local resonance properties. These properties may be realized by 

numerous configurations. The first realization was presented by Liu et al. [2000] in which a three-

dimensional array of lead spheres was coated with a very thin (2.5-mm) layer of silicone rubber (i.e., a 

very soft material) and stacked in a simple cubic arrangement within an epoxy matrix. The heavy spheres 

were then able to resonate in their slots and as such introduce a new type of elastic band gap in the 

frequency band structure. This type of band gap emerges due to the interaction between a local resonance 

mode and the dispersion modes of the underlying periodic medium. This interaction is often referred to as 

hybridization. The most attractive feature of a locally resonant band gap is that it can appear at 

subwavelength frequencies since its creation is independent of Bragg scattering. Another practical 

realization of a locally resonant acoustic metamaterial is one that is based on a formation of a periodic 

array of resonating pillars on a flexural plate [Pennec et al., 2008, Wu et al., 2008].  This configuration 

will be utilized later in Chapter 5, albeit at the nanoscale.  

 Nanoscale Phononic Materials 1.3

 The concept of a phononic material as described in Section 1.2 may very well be realized at the 

nano, or sub-continuum, scale (nm-μm). In the thermal transport regime, the wavelengths of the 

propagating waves are now on the order of the atomic spacing of a crystalline material. Therefore it is 

most accurate to model the unit cell at the atomic level, i.e., incorporating information about the number 

and location of individual atoms. Consequently, the dispersion relation now provides insight into the 

atomic motions associated with the crystal lattice as well as the added periodicity in the nanoscale 

phononic material. Such atomic scale resolution is essential when predicting phonon thermal transport 

properties.  At this scale, lattice dynamics (LD) is employed to model the inter-atomic dynamics of the 

primitive unit cell and obtain the dispersion relation (further details are provided in Section 1.4.1). 
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 When forming a nanoscale phononic crystal (NPC), a supercell is introduced to represent the basic 

periodic geometry of the nanostructured medium.  Given that the selected material must obey the proper 

atomic arrangement, a supercell must be formed by following the order of the material lattice (i.e., 

consistent with the geometry of a primitive cell, or more conveniently, a conventional cell as will be 

shown later). As a result one can say that in principle a NPC is a crystalline material that has two levels of 

periodicity: (1) the natural underlying material lattice (defined by a primitive cell forming the baseline 

crystalline structure) and (2) the NPC lattice (defined by a supercell describing a unit cell of the nanoscale 

phononic material yet still containing the underlying material lattice information).  This enables the 

ability to create large supercells with complicated features such as voids, boundaries and extensions 

utilizing the baseline material. 

1.3.1 Methodology for Reducing Thermal Conductivity with Nanoscale Phononic Materials 

 Following on the above discussion, nanoscale phononic materials clearly present a promising 

candidate for the design of materials for desired thermal transport properties, and subsequently desired 

thermoelectric energy conversion properties. The main attractive aspect of nanoscale phononic materials 

in this context is their ability to be tailored, via unit cell design, to achieve desired dynamical/thermal 

properties. Motivated by this attractive trait, this dissertation aims to explore new nanoscale phononic 

material configurations for controlling the thermal conductivity, especially in semiconducting materials. 

In this section, different configurations of nanoscale phononic materials are discussed.  The different 

unit cell geometries studied in this dissertation are introduced along with the unique benefits and 

challenges which occur.  In Section 1.3.2, an overview is presented that explains the reasoning behind the 

selection of silicon as a baseline material for these studies.  Finally, in Section 1.3.3, a brief overview of 

similar recent research in the literature is presented.   



www.manaraa.com

10 
 

 

 
 

 In this work, two general material systems are considered: 3D bulk and 2D thin-films.  For the 3D 

case, phonon wave propagation is admitted in all directions, while for the 2D case wave propagation is 

confined along only in-plane directions.  There are two different ways to manipulate phonon dispersion 

within these material systems: 1) through NPCs where the introduction of periodicity enables Bragg 

scattering at the internal boundaries at the supercell level and 2) via nanophononic metamaterials (NPMs) 

where the presence of a feature such as pillars introduce local resonances. While the first route has been 

studied before in the literature (see Section 1.3.3), the concept of a NPM is being proposed for the first 

time in this dissertation.   

 In Figure 1.2, the combinations of the various material systems studied in this work are illustrated.  

Here the lattice geometry is rendered as a continuous solid for ease of viewing. The top row displays 3D 

bulk material systems, and the bottom row displays thin-film based material systems. For each, the 

nominal default case is a regular, uniform crystal. This is displayed in the left column and is used as a 

baseline representation of each class.  Along the center column are the NPCs which are formed by 

introducing periodicity in the forms of voids.  The last column on the right showcases the NPMs. When 

investigating 2D thin-films, the finite boundary (i.e., exposed surface) provides the opportunity to mount 

additional features and in this case resonating pillars are added to turn the thin-film into a metamaterial.  

NPCs and NPMs both fall under the classification of a nanoscale phononic material. 

 The differences in dimensionality and/or the presence of internal/external features have a dramatic 

effect on the dispersion spectrum. This is significant because as we explain later (in Section 1.4.2), the 

thermal conductivity is highly dependent on the dispersion.  The phonon dispersion band diagram for 

each of the five material configurations is displayed in Figure 1.3. Shown in each of the subfigures is a 

plot of the temporal frequency versus the spatial frequency, or wavenumber (wave vector), of the 

vibrational modes propagating in the medium along a prescribed direction, in this case along one of the 
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Figure 1.2: Configurations of silicon crystals considered in this work, shown as continuous 
solids for simple viewing. The top row displays a 3D bulk nominal crystal (left) and a 3D 
bulk NPC (center). The bottom row shows a 2D nominal thin-film (left), a 2D NPC thin-film 
(center) and a 2D NPM thin-film (right). 

two in-plane orthogonal directions (referred to as the X path in crystallography).  The dispersion for the 

simplest case, a 3D bulk nominal material, is shown in black.  It can be noted that many of the branches 

are degenerate due to the symmetry in this nominal material and that there are two distinct acoustic 

branches that start from zero at the  point.  Upon introducing periodicity in the 3D bulk material to form 

a NPC, the dispersion branches (shown in green) are generally reduced in frequency, flatter, no longer 

degenerate and the acoustic branches are now split at the X point.  Upon moving from 3D to 2D, for the 

nominal crystal there is a significant change in the dispersion (shown in red).  Here there is a reduction in 

frequency, a few of the branches are no longer degenerate and finally there are three distinct acoustic 

branches, with the lowest one being near flat at the  point which is a trait of flexural plate-like motion.  

As periodicity is incorporated for the thin-film the changes in dispersion (shown in blue) mirror the bulk 

NPC, such as a general reduction in frequency, broken degeneracy, and flatter branches. However, the 

dispersion maintains a few key thin-film properties such as the three unique acoustic branches.  Finally 
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when pillars are added onto the thin-film to form a NPM, the dispersion curves (shown in purple) looks 

similar to the default dispersion (red) with the primary, and significant, difference of exhibiting several 

very low flat frequency branches that cut through the underlying dispersion curves to form pseudo band 

gaps. These flat branches are associated with the pillars’ resonating modes.  Reduced degeneracy is also 

observed as in the NPC cases.  

 The key takeaway message from Figure 1.3 is that by modifying the dimensionality and/or periodic 

features, significant changes occur in the phonon dispersion.  Given that the thermal properties in a 

material are dictated by the phonon dispersion, opportunities exist to engineer the unit cell configuration 

to improve thermoelectric efficiency.  A unique aspect of the work presented in this dissertation is that the 

full dispersion of the nanostructure is used to compute the thermal conductivity of the material (see 

Section 1.4).  Many studies in the literature often rely on approximate dynamical analysis by relying on 

bulk dispersion properties, which limits the accuracy of the predictions. 

 In this dissertation, the first material models studied are 3D bulk supercells which utilize voids to 

create the NPC.  By focusing on a 3D nominal bulk system, a comparison could first be made between the 

thermal conductivity predictions of primitive silicon (the most basic atomic structure containing 6 degrees 

of freedom) and silicon supercells of a desired size and shape containing n degrees of freedom (black plot 

in Figure 1.3).  Upon this understanding, a direct comparison of the thermal conductivity of supercells for 

nominal bulk and bulk NPCs (green plot in Figure 1.3) could be realized.  Limitations however appeared 

in the treatment of phonon scattering, especially when boundaries were introduced from the void walls. 

In addition, uncertainties in the manufacturing process and how the electron transport would be 

interrupted by the voids needed to be addressed.  The natural next move was to focus on nominal or 

homogenous 2D thin-films (red plot in Figure 1.3) which had readily available empirical data across 

various thicknesses.  Because of this, the scattering parameters were fitted to accommodate the 
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Figure 1.3: Dispersion for 3D bulk crystal (black), 3D NPC crystal (green), 2D thin-film (red) 
2D thin-film NPC (blue) and a 2D thin-film metamaterial (purple). These plots offer a 
comparison between phonon dispersion for the various nanostructured configurations.  For 
example note the difference in the acoustic branches between the 3D and 2D dispersion. In 
addition to phonon branch flattening, the modal degeneracy is broken by the insertion of 
voids which turns a default bulk material and thin-film into a NPC.  The presence of pillars 
creates several flat branches cutting through the acoustic branches. 

boundaries of the film.  Upon understanding the thermal properties of thin-films, the next step was to 

insert voids to create the NPC (blue plot in Figure 1.3); however it was determined that the elimination of 

material along the electron path and the effects of phonon scattering due to the void created additional 

pitfalls in the physical behavior or uncertainties in the modeling.  These concerns were eliminated by 

focusing on the proposed 2D NPM which was created by erecting an array of periodic pillars to the top 

free surface of a thin-film (purple plot in Figure 1.3) and thus not obstructing the electron path, nor 

causing any modeling concern on the effects of internal boundary scattering.  

1.3.2 Selection of Silicon 

 For the entirety of this work, silicon is used as a baseline material for a variety of reasons:  1) Silicon 

is ubiquitous within the electronic industry and continues to hold a central part in the semiconductor 
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revolution.  As a result, this material is well understood and embraced across the electronics industry with 

abundant capability and knowhow to manufacture complex, cost effective nanostructured devices; of 

which much empirical data already exists.  2) With the exception of thermal conductivity, silicon 

maintains properties which are excellent for thermoelectrics.  Telkes [1947] famously stated that although 

silicon was electrically an ideal material, the high thermal conductivity properties inhibited it from 

advancing the field of thermoelectrics.  Thus if it is possible to reduce its thermal conductivity without 

affecting its electrical conductivity, the potential for realizing high value of ZT are significant. And 

finally, 3) the simplicity of the silicon lattice geometry is advantageous for use as a baseline for future 

development of more complex crystalline structures.  Since the theoretical thermoelectric figure-of-merit 

ZT of bulk silicon is relatively low compared to other materials such as the Bi2Te3 class (which are 

commonly used), it is believed that the improvements achieved in the context of silicon can be transferred 

to other material classes with magnified outcomes.  Vining [2008] provides further assessment on the 

capabilities for developing silicon-based thermoelectric materials. 

1.3.3 Brief Literature Review of Nanoscale Phononic Crystals 

 Several efforts have been underway to precisely quantify the reduction in thermal conductivity of 

NPCs in different configurations, e.g., bulk, nanowires, etc.  Many of these efforts utilize lattice dynamics 

to predict the dispersion. Tamura et al. [1999] used LD to obtain the dispersion of 2D layered media. 

Gillet et al. [2009] and Gillet [2010] used LD in several studies of 3D bulk NPCs consisting of silicon 

with germanium inclusions. His models were based on supercells in which a large array of “inclusion” 

atoms is incorporated. These studies however did not establish conditions for the validity of the supercell 

LD calculations and did not present an analysis on the different underlying transport mechanisms and 

how they are affected by the periodicity of the NPC.  
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 On the experimental front for patterned thin-films (i.e., thin-film NPCs), recent work by Yu et al. 

[2010], Tang et al. [2010] and Hopkins et al. [2011] show a significant reduction in thermal conductivity 

due to the influence of voids. Yu [2010] notes that the “structure exhibits a substantially lower thermal 

conductivity than an equivalently prepared array of silicon nanowires, even though this array has a 

significantly higher surface-to-volume ratio.” In addition, Hopkins et al. [2011] notes that the thermal 

reduction is beyond what was expected from boundary scattering at the interfaces which suggests 

coherent phonon transport effects might be responsible. 

 Tools for Modeling Thermal Conductivity of Nanophononic Materials 1.4

 We recall that our goal is to explore the utility of using 2D and 3D nanoscale phononic materials to 

inhibit propagating phonon waves that contribute significantly to thermal conductivity.  To this end, one 

must first understand the wave motion behavior in nanoscale phononic materials (phononic crystals and 

metamaterials) and apply this understanding towards the manipulation of the dispersion relation.  In 

addition, a robust methodology of calculating dispersion and thermal conductivity for an atomic-scale 

supercell must be developed and understood.  In this section, an overview outlining the basic principles of 

phononic materials, lattice dynamics and the thermal conductivity formulation are overviewed to provide 

a basis for the work performed in the rest of the dissertation. 

1.4.1 Lattice Dynamics 

 To model wave propagation in a discrete atomic medium, lattice dynamics calculations are 

conducted. In LD, each atom is treated as an individual point mass that is connected to neighboring atoms 

with a spatially dependent energy potential. The equations of motion for each atom within the system are 

compiled and a planewave solution is inserted to form the dynamical matrix. Upon treatment as an 

eigenvalue problem, the phonon frequencies are determined for each mode across all possible 
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wavenumbers (or wave vectors). In the harmonic approximation, each mode is characterized by a 

frequency, a wave vector, a polarization, and mode shape. 

 The conventional LD formulation utilizes Newtonian mechanics to compile the dynamical matrix 

which represents the inter-atomic interactions within the lattice.  As a result, a force relationship is 

evaluated and balanced at each atomic location requiring a series of nine force constants to represent all 

orthogonal interactions.  In this work (outlined in Chapter 2) an alternative energy-based Lagrangian 

formulation is proposed, following the identification of a network of springs connecting each atom with 

the other nearest neighbors, and this, in practice, pins each inter-atomic relationship to a designated axis 

and thus enables the use of a single force constant to represent the strength of each atomic pair 

interaction. However, we also use the standard Newtonian approach because of its use in available 

commercial software. 

  The NPCs and NPMs considered in this work consist of supercells with voids or a pillar, 

respectively. As a result, the periodicity is geometrically induced by the removal or addition of clusters of 

atoms. Although in many cases a band gap may not form by simply removing or adding material, the 

shifting in the phonon frequencies and the flattening of the dispersion bands have significant effects on 

the phonon wave propagation characteristics, leading to changes in the thermal transport properties (when 

compared to the original baseline crystalline material).  Further details on lattice dynamics are available in 

the works of Dove [1993] and Maradudin [1963], and in Chapter 2 in the context of the newly developed 

Lagrangian-based lattice dynamics. 

1.4.2 Thermal Conductivity Prediction 

 The thermal conductivity k of a material is related to the speed of energy carriers (phonons and 

electrons) and is inversely related to the resistance that these carriers experience when traveling in a 

medium. This property can be defined using Fourier’s law,  
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dT
kq x   (1.2) 

where the heat flux qx, along a direction x, is proportional to a the negative of an applied temperature 

gradient dT/dx. Here the negative sign indicates that the energy flows from a source to a sink.  

 The Boltzmann Transport Equation (BTE) considers the statistical distribution of energy carriers 

when subjected to an external force, in this case a temperature gradient. When combined with Fourier’s 

law, the following expression, 

 ,vck igphi ),κ(),κ(),κ(
κ

, 

 2

 (1.3) 

can be extracted to predict thermal conductivity k. Equation (1.3) states that the thermal conductivity is 

calculated by summing contributions across all phonon branches of dispersion (for branch number or 

mode λ) at every point spanning the Brillouin Zone (for each wave vector κ).  Here cph is the specific heat 

or energy of the mode per unit volume, vg is the group velocity (along component i) representing the 

speed of the phonon wave and τ is the scattering rate or the lifetime of the phonon in the lattice. The 

specific heat and group velocity can be obtained directly from the phonon dispersion while the scattering 

time is usually fitted to empirical data.  Alternatively the scattering parameters can be obtained by either 

anharmonic LD calculations or molecular dynamics simulations. 

 The form of Equation (1.3) requires knowledge of the phonon dispersion for every point within the 

Brillouin Zone which can be computationally costly.  The Callaway-Holland formulation [Callaway, 

1959, Holland, 1963] for thermal conductivity introduces a simplification by assuming that the material is 

isotropic and hence the Brillouin Zone is uniform with respect to all directions, thus enabling a simplified 

evaluation of thermal conductivity.  With this approximation, Equation (1.3) becomes  
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for a face-centered cubic lattice type such as bulk silicon where the -X path ranges from 0 to 2π/a.  Here 

the summation over wave vector κ is replaced with 4πʃ κ2dκ to represent the volume of the now-spherical 

Brillouin Zone which is roughly similar to the shape of primitive silicon.  In addition, the specific heat Cph 

is now non-dimensionalized with respect to volume and has the units of Joules/Kelvin.  The average value 

of the velocity vector for an isotropic spherical volume produces the factor of 1/3 (and hence allows us to 

eliminate the dependence of vg with i) and the normalized volume of the Brillouin Zone in 3D space for a 

primitive cell, (2π)3. 

 Since this work focuses on dielectric materials at around room temperatures, the contribution to the 

thermal conductivity from the electrons and photons are negligible. Further details on the fundamentals of 

nanoscale thermal transport is available in Kittel [2005] and the work of Chen [2005].  

 Broad Literature Review 1.5

 This section provides a thorough, yet non-exhaustive, survey of the current literature regarding the 

main focus areas of this research and includes discussions on: 1) wave propagation in periodic media, 2) 

lattice dynamics and finally 3) nanoscale thermal transport. 

1.5.1 Wave Propagation in Periodic Media 

 This section presents a brief and non-exhaustive synopsis of some of the most significant 

contributions to elastic wave propagation and provides a flavor of the relevant developments to this work.  

Rich overviews pertaining to the historical development of wave propagation and periodic media research 

are provided by Brillouin [1953] and Graff [1991]. 

1.5.1.1 Early Studies 

 One of the first worked examples of wave propagation in a periodic medium occurred in 1686 by 

Newton in an attempt to model the speed of sound in air. He assumed that the waves could be modeled as 
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a one dimensional series of point masses and springs, Newton [1686]. This was only eight years after 

Hooke [1678] formulated the law of proportionality between stress and strain, the basis for the modern 

theory of elasticity. Developments in wave propagation in isotropic solids followed with significant 

contributions by Taylor, Euler, Bernoulli, Lagrange, Navier among others, which provided insight for 

vibrations in lumped parameter models, energy methods and simple elastic solids. Poisson [1827] was 

among the first to investigate wave propagation in elastic solids and distinguish the difference between 

longitudinal and transverse modes. Advances soon followed that incorporated complex solids (beams, 

thin plates, surfaces etc.) which set the basis for our modern day understanding of elastic wave 

propagation theory. 

 An early study of wave propagation in continuous periodic structures can be traced back to Rayleigh 

[1887] who used Floquet’s theorem for one-dimensional elastic composites. The mathematical 

expressions to model a unit cell in a three-dimensional media were formulated by Bloch [1928] in the 

context of electrodynamics. This work led to a revolution in the understanding of the electronic structure 

of solids and the classification of materials into conductors, insulators and semiconductors. Brillouin 

[1953] used unit cell geometrical symmetry to define, in reciprocal space, a finite wavenumber range that 

would encompass a complete solution of the dispersion relation regardless of structural complexity.  The 

accumulative body of work referred to above would later be widely applied and has led to the emergence 

of the field of phononics*. 

                                                      

 
* Phononics2011: The First International Conference on Phononic Crystals, Metamaterials & Optomechanics was held in May of 
2011 in Santa Fe, New Mexico.  The diverse range of topics and discussions by over one-hundred participants has set the stage to 
continue this meeting in the future to enable further growth of the phononics community.  
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1.5.1.2 Periodic Materials from the 1950s Onwards 

 Now a brief synopsis is provided starting from the 1950s. A thorough overview is well beyond the 

scope of this dissertation. Instead a narrow snapshot summary of some of the most relevant topics that 

have impacted this work are provided.  

 Thomson [1950] gave a thorough analysis of elastic wave transmission in a stratified medium. Lee et 

al. [1973] investigated the properties of band gaps and their dynamical characteristics. Kushwaha et al. 

[1993] contributed to development of the Plane Wave Expansion Method for Phononic material band 

structure calculations. Mead [1996] compiled a thorough analysis of discrete and continuous periodic 

structures examining their behavior in numerous configurations. Recently Hussein et al. [2006, 2007] 

studied the correlation between Phononic materials in infinite and finite settings and proposed a 

multiscale dispersive design methodology that effectively combines the two. 

 Within this dissertation, many previous efforts have been crucial in setting the groundwork, for 

example, the work of Jensen [2003] who used LD of a 2D mass-spring lumped-parameter model to 

determine the effect of defects on the opening of band gaps. Another example is the Reduced Mode Bloch 

Expansion formulation developed by Hussein [2009] to enable accurate model reduction (and hence 

reduce the required computational resources when calculating band structures). Finally the effect of 

periodicity truncation (the topic of Section) has been explored by Haldky-Hennion et al. [2005].  

1.5.2 Nanoscale Thermal Transport 

1.5.2.1 Lattice Dynamics 

 Although the direct evolution of the lattice dynamics concept may be ambiguous, the idea of 

utilizing a lattice-based system with interatomic energy potentials to model dispersion of a prescribed 

medium has a lengthy history.  It can be found that the advancements in lattice dynamics were driven by 

the goal to improve thermal conductivity predictions and as a result closely follow the developments in 

the following sections.  However, there are distinct milestones and phases in the advancement of lattice 
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dynamics which are outlined in the next paragraph.  Further overviews on this topic are available by 

Brillouin [1953], Maradudin [1963] and Horton [2003]. 

 The first known problems utilizing the concept of lattice dynamics was performed by Newton [1686] 

which utilized masses and springs arranged in a linear chain to determine the speed of sound in air.  

Although much advancement involving periodicity and elastic media over the next two-hundred years 

was realized, one of the most notable developments in the concept of lattice dynamics came from Einstein 

[1907] and Debye [1912] who were among the first to use the mass/spring concept to approximate the 

thermal properties and dispersion in a material.  During this same period the first dispersion relation and 

frequency spectra of atomic interactions embedded in a crystalline lattice were published by Born and von 

Karman [1912].  This concept utilized a simple mass/spring relationship with a basic energy potential and 

formed the baseline practice of lattice dynamics that remain to this day.  Over time a series of 

improvements were implemented to the energy potential to span a larger selection of atomic elements and 

lattice types, accurately portray dispersion at extreme temperatures and to incorporate optical modes.  One 

of the most notable potentials was introduced by Lennard-Jones [1924] which enabled simplistic 

approximation to the nonlinear attractive / repulsive interatomic forces of common bonds.  More recently 

advanced multiple body potentials have been developed with the help of computational resources and 

empirical data yielding dispersion relations with a high level of accuracy; a few modern potentials for 

silicon were formulated by Stillinger and Weber [1985] and Tersoff [1988a 1988b]. 

 Along a different track, in the 1950’s a mathematical formulation was developed to automate the 

lattice dynamic formulation utilizing a generic lattice type and energy potentials utilizing multiple bodies.  

This formulation also included anharmonic perturbation theory which today has become a corner stone of 

lattice dynamics and used extensively when modeling nonlinear effects such as phonon scattering.  An 

extensive overview of this mathematical formulation is available by Maradudin [1963]. 
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1.5.2.2 Thermal Conductivity at the Nanoscale 

 In this section a brief discussion is provided on the evolution of thermal characterization of solids 

and how it has led to our current understanding of thermal transport at the nanoscale. There are several 

sources which elaborate in detail on several of the key concepts briefly summarized in this report: Kittel 

[2005], Ashcroft and Mermin [1976] and Chen [2005].  

 Einstein [1907] was among the first to model the heat capacity of solids with kinetic theory. He 

assumed that the heat capacity of a solid was due to the atomic lattice vibrations. For his analysis, he 

assumed that each atom in the lattice was independently connected with springs and masses (i.e., a 

quantized harmonic oscillator) all of which, for simplicity, had the same frequency. Debye [1912], 

expanded upon this model to account for the varying frequencies which has yielded improved results at 

low temperatures that better matched empirical measurements. This formed the foundation for Peierls 

[1929] to characterize the “quantized normal modes of a perfect lattice, giving rise to the concept of 

phonons which is analogous to photons in radiation theory†.” Based on this concept, Klemens [1951] 

performed one of the first comprehensive theoretical studies of thermal conductivity by incorporating the 

Boltzmann Transport equation and true phonon lattice vibrations. In addition, this work was among the 

first theoretical models to incorporate phonon-phonon interactions. Klemens [1955] included the 

influence of material imperfections on phonon scattering. 

 Callaway [1959] implemented this model for silicon forming a simple formula that uses bulk phonon 

dispersion and experimental data. Here he assumed that the Brillouin Zone was directionally isotropic and 

only considered three degenerate non-dispersive acoustic modes for contribution to the thermal 

conductivity. Holland [1963] expanded upon this work by distinguishing between transverse and 

longitudinal modes and including optical modes. Today the Callaway-Holland model is widely used as a 

                                                      

 
† As stated by Klemens [1951] 
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simple formulation for the thermal conductivity prediction of face-centered cubic crystals. For silicon, 

improved experimental measurements of dispersion [Dolling 1963] and elaborate, semi-empirical, 

formulations of interatomic energy potentials [e.g., Stillinger and Weber, 1985, Tersoff, 1988(a), 1988(b)] 

have led to further improved models of phonon transport especially when influenced by crystalline 

boundaries [Li, 1988].  

 With robust, well characterized interatomic energy potentials, the LD formulation [see Dove, 1993 

and Maradudin et al., 1963] is widely used to calculate the phonon dispersion of relatively simple bulk 

materials or complex nanostructured materials. The same principles that govern the Callaway-Holland 

model for primitive silicon can therefore be tailored to model the thermal transport of nanoscale phononic 

materials based on supercells and for complex nanostructured geometries such as thin-films, nanowires 

and nanodots. 

1.5.2.3 Thermal Conductivity of Nanoscale Phononic Materials 

 The study of thermal transport in nanoscale phononic materials is a diverse field that requires both 

rigorous theoretical analysis and precise experimental measurements. In recent years, advances in 

computational modeling complemented with new fabrication techniques have led to intense research 

development in phonon engineering of nanoscale structures [see for example Chen, 2000(a), 2000(b) and 

Balandin, 2005]. In general, studies concerned with the thermal transport properties of nanoscale 

phononic materials need to adequately address the (1) treatment of dispersion and (2) the nonlinear 

scattering processes which involves the interactions of phonons with boundaries, impurities and other 

phonons. A brief overview of some of the early works in nanoscale phononic materials (or superlattices in 

the context of 1D material systems) and current avenues of interest are now presented. 

 One of the early works that identified the influence of artificial periodic media on thermal 

conductivity was by Balandin and Wang [1998]. He used simplified continuum models for the dispersion 
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of semiconductor quantum wells and used low order approximations of scattering rates. Follow-on work 

by Balandin et al. [2003] showed that in principle phonon transport can be inhibited with repeated 

inclusions. A similar conclusion was found by Cleland et al. [2001] considering a one-dimensional 

superlattice. It was suggested that a significant reduction in the thermal conduction is possible, at the very 

least due to the interface scattering. Other efforts have been underway to precisely quantify the reduction 

in thermal conductivity of superlattices in different configurations, e.g., bulk, nanowires, etc. Tamura et 

al. [1999] used LD to determine the dispersion of 2D layered superlattices. Gillet et al. [2009] and Gillet 

[2010] used LD in several studies of 3D bulk nanoscale phononic materials consisting of silicon with 

germanium inclusions. His models were based on supercells in which a large array of atoms is 

incorporated. These studies however did not establish conditions for the validity of the supercell LD 

calculations and did not present an analysis on the different underlying transport mechanisms and how 

they are affected by the periodicity of the nanoscale phononic material.  

 To improve upon the prediction of phonon lifetimes (due to phonon-phonon, phonon-boundary, and 

phonon-impurity interactions), molecular dynamics (MD) simulations have also been employed (for both 

bulk and nanostructured media). The Green-Kubo method [Green 1954, Kubo 1957] is widely used as a 

statistical approach for predicting the thermal conductivity using MD information. McGaughey and 

Kaviany [2006] provide a comprehensive overview of phonon transport analysis using MD. Mingo 

[2003] studied nanowires using both LD (for dispersion) and MD (for capturing anharmonic effects) to 

further improve and assess the emerging thermal conductivity predictions. This work confirmed earlier 

reports stating that phonon-boundary interactions cause a significant reduction in the thermal 

conductivity. Chantrenne et al. [2005] built upon this work for nanoribbons. He et al. [2011] performed a 

similar study for complex porous thin-films involving thousands of atoms. In most of these studies, 

however, whenever LD is employed, it is approximated with that of the bulk material. Some exceptions 

are the works of McGaughey et al. [2004, 2006] and Laundry et al. [2008] in which the full dispersion of 
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layered 1D diatomic materials were incorporated and MD was employed to obtain the scattering rates. By 

accounting for the full dispersion of the nanostructured crystal, not only is the model more accurate but it 

also provides insights into the role that coherent wave propagation mechanisms play in determining the 

thermal transport properties. This is the approach followed in this report. 

  On the experimental front, advances have been made in measuring the thermal conductivity of bulk 

materials, thin-films, nanowires etc. Asheghi et al. [1997, 1998] and Liu et al. [2004] were among the first 

to measure the lateral thermal conductivity of thin and ultra-thin-films. Their work correlated the 

decreasing film thickness to a drop in thermal conductivity due to the influence of boundary scattering. Li 

et al. [2003] performed one of the first studies of nanowires and noted the reduced thermal conductivity 

verses diameter due to phonon-boundary scattering. 

 Objectives and Overview of Dissertation 1.6

 Nanoscale phononic materials can be utilized to alter the thermal transport properties of an otherwise 

regular crystalline material due to phonon manipulation.  This dissertation aims to first improve upon the 

existing formulations for prediction of the thermal transport properties of nanoscale phononic materials. 

The prime goal is to elucidate the full effects of the added periodicity on the phonon transport properties 

and to introduce the concept of a NPM for the purpose of realization of high value of thermoelectric 

figure-of-merit. Meeting this goal will potentially impact others applications as well, for example, 

enhancement of heat dissipation in semiconductor materials.  

There are five main objectives in this dissertation: 

1. Develop a Lagrangian formulation for lattice dynamics calculations for 3D nanoscale 

phononic materials. Show how the inclusion of a defect or a heavy point mass creates 

significant changes in the dispersion and leads to the opening of a band gap.  
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2. Develop supercell lattice dynamics and thermal conductivity prediction models of silicon-

based 3D NPCs. Characterize the thermal reduction due to coherent phonon transport 

mechanisms. 

3. Develop full unit cell models for lattice dynamics calculations and thermal conductivity 

prediction of silicon thin-films. Compare with alternative models and experimental 

measurements. 

4. Develop supercell models for lattice dynamics calculations and thermal conductivity 

prediction of silicon-based thin-film NPMs.  

5. Determine the influence of periodicity truncations in PCs, and verify with experiments at the 

macroscale (note this completed work is available in a conference article and is omitted from 

this dissertation since it is outside the scope of nanoscale thermal transport). 

1.6.1 Overview of Dissertation 

 An outline of the main chapters of the dissertation is presented in this section.  It begins with a 

discussion of lattice dynamics in a Lagrangian framework.  It next transitions into modeling silicon 

thermal conductivity of primitive, uniform supercells and NPC supercells in a 3D bulk setting.  The final 

part of the dissertation transitions to 2D thin-film materials in which models of the thermal conductivity 

of uniform thin-films and NPM thin-films containing resonating pillars are presented.  Chapters 2-5 are 

written in the form of journal articles of which Chapter 3 has already been published and the rest are in 

preparation for submission (some have been already been published as conference proceedings). 

 In chapter 2, the dispersion of NPCs is modeled using a Lagrangian formulation. The atomic 

structure and force constants are accounted for by means of a mass-spring model. This study focuses on a 

simple cubic lattice with one mass per primitive unit cell and the utilization of a rather simple interatomic 

potential. The model is used to conduct a series of studies on the influence of defects intentionally 
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introduced to the lattice at a supercell level. Under various defect conditions, a band gap emerges with 

varying location and size. In addition, a general reduction in phase and group velocities is demonstrated. 

A journal article is currently in preparation that highlights the difference between the energy-based 

Lagrangian formulation and the conventional Newtonian lattice dynamics formulation. A corresponding 

conference article has been published in the 2009 ASME Biennial Meeting on Vibration and Acoustics. 

 In chapter 3, supercell lattice dynamics is used to investigate the thermal transport behavior of three-

dimensional NPCs formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a 

simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of 

the bulk crystalline silicon primitive cell. The phonon band structure is computed and subsequently used 

to predict the thermal conductivity following the Callaway-Holland model. The findings shed light on the 

minimum supercell size and wave vector sampling resolution needed to accurately predict thermal 

conductivity of NPCs. Furthermore the results show that even for relatively small voids and unit-cell 

spacing, dispersion at the NPC unit cell level plays a noticeable role in determining the thermal 

conductivity. This work has been published in a special issue of the journal AIP Advances [Davis and 

Hussein, 2011]. A corresponding conference abstract was published in Phononics 2011: 1st International 

Conference on Phononic Crystals, Metamaterials and Optomechanics. 

 Chapter 4 is dedicated to modeling the thermal conductivity of silicon thin-film supercells using full-

scale lattice dynamics. The phonon band structure of 2D thin-films is computed and found to exhibit 

significant differences when compared to that of the bulk material. A 2D form of the Callaway-Holland 

model is formulated to incorporate the out-of-plane finite properties of a thin-film. This model is 

compared with the conventional formulation which uses bulk dispersion and/or scattering parameters to 

approximate the phonon thermal conductivity. The results show that the thin-film full dispersion model 

better fits with the experimental data over a large temperature range. A journal article documenting this 

work is under preparation. A corresponding conference article has been published in the 2012 ASME 
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International Mechanical Engineering Congress and Exposition. This work was done in collaboration 

with Sandia National Laboratories. 

 In Chapter 5 the thin-film work is expanded upon to include pillars which are embedded on the free 

surface forming a NPM, which is a novel concept.  Here the pillars act as local resonators to manipulate 

the propagation of phonon waves at subwavelength frequencies.  One of the primary benefits to 

incorporating pillars is that they are not in the path of electron transport which is contrary to other NPC 

studies in which voids are inserted through the thickness of the thin-film.  Lattice dynamics is used in 

conjunction with a finite element formulation to model dispersion of unit cells consisting of various sizes.  

For the finite element model, special considerations are taken to ensure that the adequate element sizes 

are considered in order to sufficiently capture nanoscale effects.  The results show that the presence of a 

pillar significantly reduces the thermal conductivity in the thin-films.  This effect is further pronounced by 

varying pillar height and unit cell spacing.  A journal article documenting this work is under preparation. 

A corresponding conference abstract is due to appear in Phononics 2013: 2nd International Conference on 

Phononic Crystals/Metamaterials Phonon Transport and Optomechanics. 

 Finally, the dissertation closes with a few concluding remarks and discusses a future outlook and 

recommendations for follow-on studies. 
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 Nomenclature 1.7

Acronyms 

 BTE Boltzmann Transport Equation 

 LD Lattice Dynamics 

 MD Molecular Dynamics 

 NPC Nanoscale phononic Crystal 

 NPM Nanoscale phononic Metamaterial 

  Note: Both NPCs and NPMs are a subset of Nanoscale phononic Materials 

 PC Phononic Crystal 

 PM Phononic Metamaterial 

 

Variables 

 S Seebeck Coefficient (V/K) 

 σ Electrical Conductivity (1/Ωm) 

 k Thermal Conductivity (W/mK) 

 T Temperature (K) 

 Z Dimensional Thermoelectric Figure-of-Merit (1/K) 

 ZT Non-dimensional Thermoelectric Figure-of-Merit (unitless) 

 q Heat Flux (W/m2) 

 x X-directional length (m) 

 κ Wave Vector (1/m) 

 κ Wavenumber (unitless) 

 λ Phonon Branch Polarization 

 cph Volumetric Specific Heat (J/m3K) 

 Cph Specific Heat (J/K) 

 vg Group Velocity (m/s) 

 τ Phonon Scattering Time (s) 

 a Lattice Constant (m) 

 

Subscripts 

 x denotes x-direction 

 i denotes i component of direction 
 

 References 1.8

References for Chapter 1 are available in the Bibliography (Chapter 7) 
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2 LATTICE DYNAMICS IN A LAGRANGIAN FRAMEWORK 
 

Journal Version: 
Under Preparation; 

 

Preliminary Version: 
Davis, B.L. and Hussein, M.I., “A three-dimensional lumped parameter model of nanoscale phononic crystals,” 
Proceedings of 22nd ASME Biennial Conference on Mechanical Vibration and Noise, [CD ROM: pp. 1-6], San 

Diego, California, 30 August - 2 September 2009. 

 Abstract 2.0

 This work focuses on modeling nanoscale phononic crystals and analogous lumped-parameter 

systems by setting up the appropriate Lagrangian equations of motion. The lattice structure and 

interacting force constants are accounted for by means of a mass-spring model. In particular, we focus on 

a simple cubic lattice with one mass per primitive unit cell. We use the model to predict the wave 

dispersion frequency spectrum. We then use the model to conduct a series of studies on the influence of 

defects intentionally introduced to the lattice at a supercell level. One area of interest is the effect of such 

alterations on the size and location of band gaps.  Alternative methods for determining wave propagation 

through lattice systems are discussed in detail and included Section 2.7.1. 

 Introduction 2.1

 Within the field of phonon physics, lattice dynamics calculations are essential for characterizing the 

electronic and thermal properties of crystalline materials [1-4].  This well-established approach typically 

utilizes Newtonian mechanics to model the motion and interactions of atoms immersed within a lattice.  

The results yield important clues in studying a wide range of topics including the thermal conductivity of 

crystalline solids [7-9] and nanoscale phononic crystals (NPC) [10-12]. Lattice dynamics calculations 

may also be used to formulate the effective elastic properties of periodic materials [e.g. 15].  While lattice 

dynamics calculations are carried out primarily for atomic-scale models, in principle these calculations 

may also be lumped parameter spring-mass models representing macroscale periodic materials (such as 
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periodic composite materials) to study the effects of boundaries and viscous dampening [16,17].  With the 

growth of computational resources and material-level fabrication techniques, the role of lattice dynamics 

in the analysis of wave propagation in complex periodic material systems is growing rapidly. 

 From a historical perspective, the propagation of waves in a one-dimensional infinite mass chain was 

first modeled by Sir Isaac Newton as an attempt to calculate the speed of sound through air [18]. This 

analysis was based on what is now known as ‘classical mechanics’ where rigid bodies are modeled as a 

system of particles with interacting forces.  Approximately one hundred years after Newton’s studies 

Joseph-Louis Lagrange first used an energy based method to model the dynamical motion of interacting 

bodies [19].  By utilizing general coordinates, he showed that the dynamical response of a set of particles 

can be calculated by conserving the net energy and momentum of a system [5].  With this, a new level of 

dynamic complexity could be captured as the physical coordinates are aligned with the mechanical 

motion of a system [6].  This eliminates the need to define the time-varying constraining force on each 

particle.  The simplified equations of motion provide an intuitive perspective of the wave propagation in 

the medium.  When applied to lattice dynamics, Lagrangian mechanics enables practical means for more 

advanced attributes such as damping or non-linearity. The formulations is also easily adapted from a unit 

cell framework to a truncated periodic structure since the derivations involve an explicit treatment of 

individual “springs” connecting the various masses with each other.   

 In this paper, a NPC is modeled as a periodic lumped-parameter mass-spring system.  Here the point 

masses represent the atomic placement and the arrangement of springs imparts an inter-atomic potential 

for a determined number of nearest neighbor interactions.  The formulated equations of motion are used 

to determine the dynamic response and solve for the phonon mode frequencies i.e., the dispersion 

relation.  This paper presents the development of the lattice dynamics equations of such spring-mass 

model by following a Lagrangian mechanics framework, as opposed to the Newtonian framework as 

commonly done for atomic-scale frequency band structure calculations.  The advantage is that we can 
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now associate a single force constant to each specific atomic pair for a prescribed geometric orientation. 

In contrast, for the Newtonian approach, nine force constants are calculated for each atom to account for 

the elastic forces experienced from all directions and from all nearest neighbor atoms – without 

specifically specifying and allotting springs.   

 Section 2.2 outlines the derivation and development of the lattice dynamics within a Lagrangian 

framework. Section 2.3 presents a fully worked example for a simple nanoscale cubic lattice structure.  

Here a primitive unit cell is repeated along specified Cartesian directions with Bloch wave propagation 

conditions imposed to compute the band structure dispersion relation.  The differences between the two 

methods (Lagrangian versus Newtonian) are discussed in section 2.4 and the versatility of the model is 

demonstrated in Section 2.5.  Finally we consider the possibility of opening up a band gap in our model 

by perturbing the mass of a single atom in a 5x5x5 supercell, and as such effectively form our NPC, or 

phononic bandgap material. 

 Lattice Dynamics in Newtonian and Lagrangian Frameworks 2.2

 As discussed above, the dynamic motion of an atomic-scale system is commonly modeled following 

the formulations of Newtonian mechanics.  In this approach, the equations of motion are determined by 

balancing forces on a prescribed mass within the lattice.  Eq. (2.1) represents the application of Newton’s 

second law of motion, i.e., the acceleration of mass i is constrained by the gradient of the instantaneous 

elastic energy potential φ imparted by neighboring masses which follow.  Here r , r and m are the 

position vector, acceleration vector and mass respectively with t denoting time.  The gradient term 

requires the evaluation of the elastic energy potential φ in the prescribed lattice geometry.  The full lattice 

dynamics formulation leading to an eigenvalue problem whose solutions provides the dispersion relation 

is summarized in the appendix. 

 0)(),(  trmtr iiii   (2.1) 
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 As an alternative approach, Lagrangian mechanics may be used for the generation of the equations of 

motion and dispersion relation for a crystalline material.  Lagrangian mechanics is based on the principle 

of virtual work, due to applied and inertial forces, and the notion of a virtual displacement defined in a 

manner consistent with the constraints.  This is the basis for d’Alembert’s principle which takes the form 

of 

   0 iiiii rrmFW  
 (2.2) 

where the virtual work W performed on the system is set to zero to conserve energy.  The variables F , m,

r , and r denote the force vector, mass, acceleration vector, and virtual displacement vector respectively 

for the mass i.  A set of generalized coordinates q, which represent the motion of the system is established 

as 

  tqqqrr nii ,,..., 21  (2.3) 

where the motion of each mass i is fixed to n degrees of freedom.  Upon combining Eqs. (2.2) and (2.3) 

and incorporating the generalized external (i.e., non-conservative) force Qi the Lagrangian takes the form 

of  
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Since the interest is dispersion analysis, we set Qi = 0. The kinetic energy T can be written as 
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and potential energy V as 
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where k represents the elastic stiffness between interacting masses i and i’.  It should be noted that the 

potential energy is derived on the basis of Hookes law requiring the position of mass i and neighboring 

mass i’.  The total potential energy is found from the summation of all neighboring mass interactions i’ 

considered.  In addition, the spring stiffness constant between the mass pairs is defined from the second 

spatial derivative of the energy potential 
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 (2.7) 

were ϕ is the linear stiffness within the generalized coordinate system with a separation distance of iir  .  

 It is convenient to use three degrees of freedom for each mass following an orthogonal Cartesian 

coordinate system defined by the x, y, and z coordinates, i.e., 

    tzyxRtqqqr ini ,,,,,..., 21   (2.8) 

In this coordinate system, the kinetic and potential energy for each direction are easily evaluated, with the 

exception of determining the elastic constant k.  Here the stiffness magnitude is evaluated in a similar 

manner as in Eq. (2.7), except now this is done in the Cartesian coordinate system iR . 

 iiii

ii
RRr

ii
r

k











2

2

 (2.9) 

Since only one variable is used to represent the spring constant between each mass pair, 
iiR defines the 

spring extension with respect to the chosen coordinate system.  This is done by taking the dot product of 

the coordinate unit vectors with the normalized unit vector between mass i and i’. 
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 (2.10) 

By virtue of the harmonic analysis assumption, each spring is fixed to a designated axis and small 

deformations are assumed.  In the next section, we solve for the dynamic response of a simple cubic 

structure using the Lagrangian lattice dynamics formulation presented above.  

 Implementation for a Simple Cubic Structure 2.3

 The development of lattice dynamics within a Lagrangian mechanics framework provides a new 

process, and notation, for evaluating the equations of motion for a given crystalline material.  This 

approach can be utilized for any lattice type; however, for simplicity, in this work we focus on a simple 

cubic structure where the primitive cell contains only a single mass. To allow for the eventual 

construction of a nanophononic crystal, we set up a supercell which consists of a collection of Nx×Ny×Nz 

primitive cells extending along the x-y-z directions, respectively. Figure 2.1 (left) shows an example of a 

3×3×3 supercell with the central mass (red) representing the basis of the unit cell. By incorporating the 

first three nearest neighboring masses, twenty-six neighboring pairs are found to contribute to the forces  

           

Figure 2.1: A basis atom [red] with three nearest neighbor interactions forming a 3×3×3 
supercell (left).  The supercell contains thirteen unique atom/spring pairs in the primitive unit 
cell (right). 
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applied by the central mass. Due to symmetry, only half of these interactions have unique geometrical 

directions within the lattice and are contained as part of the primitive unit cell [shown as red lines in 

Figure 2.1 (right)]. 

 Following the Lagrangian formulation, the thirteen unique mass/spring pairs are individually 

identified and incorporated into the equations of motion. The neighboring interactions are contained 

within three groups: along the Cartesian axes containing three mass/springs (1,3,6), transverse and in-

plane to the axes containing six mass/springs (2,4,5,7,8,9), and out-of-plane and diagonal to the axes 

containing four mass/springs (10,11,12,13) (see Figure 2.2 for an illustration).   

 

Figure 2.2:  The atom/spring pair notation assignment graphically displayed as 2D slices of a 
3×3×3 supercell. 

These spring types can be referred to as the 1D, 2D and 3D interactions, respectively.  To organize the 

resulting equations, a particular notation is adopted in line with similar practices in the literature [2,16]. 

The central mass of each unit cell is assigned an i, j, k index which represents the lattice position within 

the supercell in the x, y, z directions respectively. In addition, the thirteen springs are assigned a fourth 

index l, which identifies each unique spring type and varies from 1 to 13. Figure 2.2 shows planer slices 

of a 3×3×3 supercell and identifies the orientation of the thirteen unique spring types with respect to the 



www.manaraa.com

37 
 

 

 
 

coordinate system x, y and z.  Upon incorporating the Lagrangian approach described above with this 3D 

notation, the equations of motion can readily derived.  The equations for the x-direction are shown in Eq. 

(2.11).  The variables u, v and w denote the displacements in the x, y, and z directions respectively. Note 

that the one-half and one-third constants are formed by the lattice geometry from Eq. (2.10). In addition,  

 )()( ,,,,,,,,,,,,,,,,,, kjikjikjikjikjikjikjikji uukuukum 11111     (2.11) 
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note how the x-direction equations of motion do not accommodate the following spring numbers: 3, 6, 8, 

and 9 since these are contained within the yz-plane and are not influenced by motion along the x-direction. 

Symmetry within the model allows for replication in the remaining y- and z-directions. 

 A traveling wave solution is applied for each coordinate, as specified in Eqs. (2.12) through (2.14). 

In these equations, A, B C denote the amplitudes for each displacement component, γ the non-dimensional 

wavenumber, ω the lattice vibration frequency, t the time and im denoting an imaginary multiplier.  

 
 tkjiim

kjikji
zyxeAu   ,,,,   (2.12) 

 
 tkjiim

kjikji
zyxeBv   ,,,,  (2.13) 

 
 tkjiim

kjikji
zyxeCw   ,,,,  (2.14) 

The non-dimensional wavenumber is divided into components following the Cartesian coordinate system 

and is written in terms of the lattice wave number κ, lattice constant a (note for simple cubic system ax = 

ay = az), and the supercell size, i.e., Nx, Ny and Nz; see Eqs. (2.16) through (2.18).  To enable periodic 

boundary conditions in the x-direction for a supercell of size Nx in the x-direction, the following relation 

holds: Ai-1=ANx for i=1 and Ai+1=A1 for i=Nx.   

 xxx Na /   (2.16) 

 yyy Na / 
 (2.17) 

 zzz Na /   (2.18) 

Upon inserting Eqs. (2.12) through (2.14) into Eq. (2.11), a relationship for the motion of each mass can 

be determined for the x-direction in terms of wavevector and vibration frequency:   
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These equations can be written as an eigenvalue problem shown in Eq. (2.23) where the S
~matrix (i.e., the 

dynamical matrix) is defined with I
~ denoting an identity matrix.  By solving for ω, the phonon frequency 

as a function of wavenumber can be determined. 
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 (2.23) 

 Lattice Dynamics Comparison 2.4

 The primary difference between the Newtonian and Lagrangian approaches is in the evaluation of 

the spring force constants and how the geometry of the lattice is incorporated. For the Newtonian lattice 

dynamics approach, the force potential is represented as 3×3 ‘force constant matrix’ which inherently 

identifies each spring orientation.  As a result, nine force constants are computed for every mass pair 

interaction.  In the Lagrangian lattice dynamics formulation, each spring is geometrically aligned to a 

designated axis which enables in the need for only one force constant (i.e., elastic stiffness) for every 

mass pair interaction.  This is defined within the equations of motion for each specific geometrical lattice 

configuration resulting in far fewer terms present in the governing equation. 

 The dispersion relation is generated using the two approaches for comparison. In these calculations, 

the distance inverse square scheme is utilized for the energy potential to determine the next-nearest 

neighboring force constants [20] with the 1st nearest neighbors set to unity.  With the wave vector 

formulation set in terms of the Cartesian directions, a circuit around the Brillouin Zone for the simple 
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cubic lattice structure is established.  Figure 2.3 shows the irreducible Brillouin Zone path used for our 

calculations.  The magnitude of the wave vector can be written in terms of Eq. (2.24).   

 
222
zyx  

 (2.24) 

 

Figure 2.3: Irreducible Brillouin Zone wave vector path for a simple cubic structure. Point Г 
has a value of [0,0,0] while point R has a value of [π/Nxax, π/Nyay, π/Nzaz].  Here ai is the 
lattice constant and Ni is the size of side i of the supercell for each Cartesian coordinate. 

Figure 2.4 shows that the resulting dispersion curves based on both the Newtonian and Lagrangian 

formulations for a 3×3×3 supercell.  Here the frequency Ω is non-dimensionalized. Clearly the two 

approaches yield an identical result, which verifies our Lagrangian lattice dynamics formulation. 

 

Figure 2.4: The dispersion relation comparison between the Newtonian (N) and Lagrangian 
Mechanics (LM) approaches for 3×3×3 supercell lattice. 



www.manaraa.com

42 
 

 

 
 

 Implementation of Superlattice Defects 2.5

 The solution of Eq. (2.23) produces the dispersion relationship of the lattice structure for any wave 

vector γ. In the nominal “perfect” lattice case, (i.e., uniform mass arrangement), a band gap does not exist. 

However by including minor “defects” it is possible for band gaps to get generated.  The size and quantity 

of defects can be used as a means to tune the band gap frequency location and range. To demonstrate this, 

the dispersion curves of two defected 5×5×5 lattice structures were calculated and compared to the 

“perfect” case. Similar to the dispersion plot shown in Figure 2.4, the distance inverse square scheme is 

utilized. The first modified scenario contains a single defect placed at the [3 3 3] location (center) shown  

 

 
Figure 2.5: The dispersion relation for a 5×5×5 super cell with single defect [3 3 3] (left) and 
double defects [2 2 2], [4 4 4] (right).  Here the ratio between the defect and the baseline mass 
Mo = 15. 
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in Figure 2.5 (left) and is given a mass value Mo that is fifteen times greater than the baseline mass.  The 

second modified scenario contains two defects placed at the [2 2 2] and [4 4 4] locations shown in Figure 

2.5 (right) and are each given the same mass ratio value. 

 

Figure 2.6: The dispersion relation for a 5×5×5 super cell with single defect.  Here Mo is the 
ratio between the defect and the baseline mass and is varied to show its increasing impact on 
the range and location of the band gap. 
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 In both scenarios, the dispersion curves are significantly altered due to the presence of the defect(s) 

and a formation of a band gap (a range where the wave propagation is prohibited) is observed. The 

presence of the band gap pushes down the acoustic branches and causes a splitting of the optical branches. 

The band structure for the two scenarios is given in Figure 2.5, where the shaded portion displays the 

band gap location.  

 The two defected scenarios contain band gaps which have varying size and range.  To demonstrate 

the ability to control the bandgaps with a lumped parameter model, Figure 2.6 has been generated for the 

first defect scenario at multiple mass ratios.  These two figures demonstrate the potential of controlling 

the frequency spectrum of the 3D nano-structured crystals.  Techniques in phononic crystal optimization 

can lead to ultra-wide band gaps [21,23] which have numerous applications to control wave propagation.  

 

Figure 2.7: Band gap size and range as a function of mass ratio Mo for a 5×5×5 supercell.  
The upper (ceiling) and lower (floor) bounds of the band gap and center (dotted) are shown. 

 As the mass ratio increases the band gap range widens and becomes lower in frequency.  This is 

illustrated in Figure 2.7 which shows the size of the band gap as a function of Mo.  Figure 2.8 displays  

how this response is also affected by the supercell size in which we observe that the band gap shrinks 

when the Mo is held constant and the supercell size is increased.  This is due to the change in the ratio of 
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the defected mass to the total mass in the supercell.  Note that for the case of a 1×1×1 lattice spacing, 

there exists a band gap floor however no ceiling since the optical branches do not exist and at some 

critical N×N×N  value the band gap closes as the optical branches are pushed down and encroach the gap. 

 

 

Figure 2.8: Band gap size and range as a function of lattice spacing n (N*N*N) for Mo=40.  
The upper (ceiling) and lower (floor) bound of the band gap and center (dotted) are shown. 

 Conclusion 2.6

 Lattice dynamics analysis, or the dynamical analysis of atomic motion of a periodic medium, has 

broad applications in determining the wave propagation characteristics and the physical behavior of 

crystalline materials.  This analysis is commonly used to model lattice vibrations at the nanoscale; 

however it also has analogous use in studying lumped-parameter phenomenon at the macroscale.  In this 

paper we developed a lattice dynamics formulation within the Lagrangian mechanics framework to 

simplify how the inter-atomic force constants are defined within the equations of motion.  Our proposed 

approach modifies the existing process by pinning each atomic interaction (in this case considered a 

spring force) to a designated axis.  As a result, a single elastic constant is sufficient for this alternative 

formulation; simplifying the equations of motion from the existing Newtonian based approach which 
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utilizes nine force constants for each atomic pair interaction.  Our formulation was demonstrated using a 

simple cubic lattice structure in which a single atom primitive cell was extended to form a supercell.  This 

new formulation enables practical means for incorporating advanced phenomenon such as damping and 

non-linearity or the modeling of truncated periodic structures. Upon applying Bloch wave propagation 

conditions and computing the band structure dispersion relation, the two approaches were found to be 

consistent.   

 By understanding the relationship between unit cell structure and the dispersion curves, the ability to 

tune a lattice to allow or reject wave propagation at specific frequencies was presented. With a simple 

defect insertion process, it was shown that minor changes to a lattice structure can potentially have a large 

effect on the dispersion curves, specifically it can results in the opening of a band gap. With the 

enhancement of the inter-atomic potentials between the atoms and the utilization of optimization tools, 

the model presented in this study can be used for the design and study of nanostructured materials with 

dynamic properties tailored to specification.  The defected supercells or phononic crystals studied within 

this paper provide a rich area of study with the ability to control wave propagation in numerous 

applications such as thermal transport at the nanoscale and phononic crystals at the macroscale 
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 Appendix 2.7

2.7.1 Lattice Dynamics Formulation in a Newtonian Framework 

 The lattice dynamics formulation to calculate the phonon dispersion relation is documented below 

and follows a notation consistent with literature [22].  We begin by using Newtonian mechanics to 

balance the forces exerted on a central atom immersed within a lattice structure as discussed in Eq. (2.1). 

This can be written with a more specific notation for atom k in the lth primitive cell: 

 



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
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kl
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. (A2.1) 

Here mk is the atomic mass, u is the displacement of atom lk with respect to an equilibrium position, t is 

time, Φ is a 3×3 inter-atomic force constant matrix, and l’k’ is an adjacent atom interacting with atom lk.  

The variables α, β represent the force interactions within an orthogonal coordinate system for the lattice 

structure and range from 1 to 3 for each direction: (1 for x, 2 for y, 3 for z).  As a result, the force constant 

matrix contains a total of nine terms for each interaction.  The summation term accounts for all 

neighboring atoms.  The stiffness equations are formulated from a Taylor series expansion, however to 

abide by the harmonic assumption, only the second order term is evaluated.  The number of nearest 

neighboring interactions desired determines the number of unit cells k’ to be considered within the model.  

The force constant matrix for a two body harmonic stiffness potential can be assembled with the 

conditions of   
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 (A2.2) 

where the double prime term is present to account for the diagonal terms of the force constant matrix and 

are a summation over all interacting atoms.  The inter-atomic stiffness potential φ is determined by taking 

the second derivative of the energy potential ø where, r is the inter-atomic separation distance (in 
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generalized coordinates), rα, rβ are the Cartesian components and the with the prime notation denoting the 

spatial derivative.   
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 The resemblances between equations Eq. (A2.3) and Eqs. (2.8), (2.10) in the body of the text should 

be noted.  For the purpose of this study, the first spatial derivative ø’ is considered to be zero.  To solve 

for a dynamic response, the traveling wave solution 

 
 tlximekAlku 


 )()()(  (A2.4) 

is applied to the equations of motion where t is time, A is the mode shape, im denotes an imaginary 

multiplier, κ is the desired wave vector and ω is the phonon frequency.  Note that the solution contains 3N 

(size of the unit cell * degrees of freedom per atom) mode frequencies and corresponding mode shapes 

for a given wave vector κ.  The result can be written in terms of an eigenvalue problem  

   0),(
~
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where D
~

is the dynamical matrix I
~

an identity matrix and ν the mode (i.e. polarization) number.  The 

formulation of the 3N×3N dynamical matrix is shown below.   
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 The subscripts on the D matrix organize the placement of terms in a convenient form.  Note that we 

are only modeling the primitive unit cell, thus the k index is set to zero over the summation and is the 

reason why this variable is not included in the subscript of the D matrix.  The square root of the 

eigenvalues for D(κ) matrix are the phonon mode frequencies with 3N solutions.  Dispersion curves are 
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generated over a desired path by varying the wave number incrementally with wave numbers typically 

ranging from 0 to π/aN, where a is the lattice constant.  Note, in symmetrical lattice systems, the solution 

often becomes degenerate reducing the total number of unique dispersion curve branches. 

2.7.2 Nomenclature 

 

Variables 

 r atomic position, generalized coordinates [m],  

 r atomic separation distance [m] 

 u atomic position x-direction, or generic Cartesian atomic displacement [m] 

 v atomic position y-direction [m] 

 w atomic position z-direction [m] 

 R atomic position (x,y,z) [m] 

 t time [s] 

 m mass [kg] 

 φ atom-to-atom interatomic energy potential (immersed in a lattice) [J] 

 ϕ linear atom-to-atom energy potential [J] 

 W work [J] 

 Q Total (generalized) force [N] 

 F force [N] 

 q generalized coordinate [unitless] 

 T Kinetic Energy [J] 

 V Potential Energy [J] 

 k stiffness [N/m2] 

 D dynamical matrix [N/m2] 

 I identity matrix [unitless] 

 A wave amplitude x-direction [m] 

 B wave amplitude y-direction [m] 

 C wave amplitude z-direction [m] 

 δ delta (change) [uniteless] 

 γ wavenumber [unitless] 

 κ wavenumber [1/m] 

 υ mode polarization [unitless] 
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 ω angular frequency [1/s] 

 im imaginary multiplier (sqrt(-1)) 

 Φ Force constant matrix [F/m] 

 N Number of primitive cells extended to forming a supercell [unitless] 

 Mo Mass defect ratio [unitless] 

 

Indicies (all integers) 

 i supercell size, x-direction, or generic atomic index 

 j supercell size, y-direction 

 k supercell size, z-direction 

 k adjacent supercell index (appendix only, follows Maradudin notation) 

 l spring type 

 l spring index (appendix only, follows Maradudin notation) 

 x x-direction 

 y y-direction 

 z z-direction 

 n number of generalized coordinates, total degrees of freedom per mass 

 α orthogonal coordinate direction [1, 2 or 3], Force Constant Matrix 1 

 β orthogonal coordinate direction [1, 2 or 3], Force Constant Matrix 2 

 

Annotations 

 ` neighbour (i.e., neighbouring mass or supercell) or first spatial derivative 

 `` special case for summation, or second spatial derivative 

 ~ denotes matrix 

 ¯ denotes vector 

 ^ coordinate direction 

 . 1st time derivative (d/dt) 

 .. 2nd time derivative (d2/dt2) 
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 Abstract 3.0

The concept of a phononic crystal can in principle be realized at the nanoscale whenever the 

conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of 

both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined 

by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this 

emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we 

demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of 

three-dimensional NPCs formed from silicon and cubic voids of vacuum. The periodicity of the voids 

follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger 

than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which 

incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we 

compute the phonon band structure and subsequently predict the thermal conductivity following the 

Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to 

be representative of the properties of the underlying lattice model, a minimum supercell size is needed 

along with a minimum wave vector sampling resolution. Below these minimum values, a thermal 

conductivity prediction of a bulk material based on a supercell will not adequately recover the value 

obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and 

void spacing we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit 

cell level plays a noticeable role in determining the thermal conductivity.  
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 Introduction 3.1

3.1.1 Nanoscale Phononic Crystals 

The concept of phonon engineering of nanoscale structures has been a topic of intense research in 

recent years, [e.g., 1-7]. Among the various phonon engineering strategies considered is the utilization of 

phononic crystals at the nanoscale (i.e., nanoscale phononic crystals or NPC) to provide a means for 

controlling the phonon transport properties. PnCs are periodic composite materials that consist of more 

than one phase (usually at least one phase is a solid and the other(s) are solid, fluid or gas). Numerous 

applications have been developed for PnCs in the macroscopic regime, e.g., elastic or acoustic 

waveguiding [8] and focusing [9], vibration minimization [10], sound collimation [11], frequency sensing 

[12,13], acoustic cloaking [14], acoustic rectification [15] and optomechanical waves coupling in 

photonic devices [16]. The realization that phononic crystals can now be sized at the nanoscale to 

influence atomic-scale phonons is opening up a new direction in nanoscale heat transfer and material 

design [17-28]. For example, among the configurations considered is the insertion of periodic holes in 

silicon slabs [24-26,28]. Should the conditions of coherent transport exist in such configurations, phonon 

waves can in principal linearly interfere while simultaneously experience nonlinear scattering events [see 

[21] for an analysis on the interplay between the effects of dispersion and anharmonic scattering in a one-

dimensional NPC]. The technological implications of tuning this phenomenological interplay are indeed 

significant. For example, it is conceivable that a phononic crystal with a relatively large lattice spacing (as 

considered in Refs. [24,26])  may exhibit a reduction in thermal conductivity without a significant impact 

on the scattering of electrons – a favorable outcome for increasing the figure-of-merit of thermoelectric 

materials [29,30]. 
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3.1.2 Supercell Lattice Dynamics and Thermal Conductivity Prediction 

There is an assortment of classical approaches available for the prediction of the phonon thermal 

conductivity of crystalline materials. Some of these approaches are based on analytical models such as the 

Callaway-Holland formulation [31,32] or the Boltzmann transport equation [33]. Scattering data is often 

obtained from experiments or using molecular (MD) simulations [34].  Another approach employs MD 

simulations followed by the application of the Green Kubo method (in the case of equilibrium 

simulations) or the Fourier law of heat conduction (in the case of non-equilibrium simulations), (see Ref. 

[22] for a comparison).  While simulations provide direct predictions and hence alleviate the need for 

making assumptions concerning material and boundary scattering, analytical models provide physical 

insight into the various factors that contribute to the thermal conductivity. 

In NPCs, it is essential to identify the role that the dispersion plays in the overall phonon thermal 

transport. Naturally this has to be done at both the primitive lattice and PnC lattice levels. A unit cell at 

the PnC level would constitute a supercell from the perspective of the primitive lattice. Supercell lattice 

dynamics information can be incorporated into a phenomenological model, e.g., the Callaway-Holland 

[31,32] model, to obtain an estimate of the thermal conductivity. One of the obstacles to this approach, 

however, is the fact that the band structure of a supercell exhibits multiple foldings of the dispersion 

branches – the larger the supercell the smaller is the size of the Brillouin Zone and subsequently the more 

intense, and often overwhelming, the foldings are. Furthermore, additional dispersion branches appear 

due to the increase in cell size (and therefore the number of atomic motion degrees of freedom).  

3.1.3 Overview 

In this paper we examine the utility of using the concept of an atomic-scale supercell and how it can 

be reliably used for the prediction of the thermal conductivity of a NPC. As a case study, we consider a 

configuration formed from silicon and cubic voids of vacuum laid out in a simple cubic arrangement. We 

choose to focus on small sizes, that is, the lattice constant of the PnC is around only an order of 
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magnitude larger than that of the bulk crystalline silicon primitive cell. The supercell for this 

configuration incorporates, by definition, all the details of the silicon atomic locations and the void 

geometry. We carry out lattice dynamics calculations for this supercell (employing the Tersoff 

interatomic potential) and subsequently use the Callaway-Holland model to predict the thermal 

conductivity. We consider the distance between the voids as a representative length scale for boundary 

scattering and use experimental data for bulk silicon to fit the material-related time relaxation parameters. 

Our aims are (1) to determine the requirements on the supercell size and the wavenumber sampling rate 

for the thermal conductivity predictions to be adequate, and (2) to investigate the role that dispersion 

plays at the supercell level in determining the thermal conductivity (for the case where the phononic 

crystal unit cell is relatively small and boundary scattering is dominant over material scattering). The 

main part of the paper is divided into two sections. Section 3.2 provides a thorough explanation of the 

primitive and conventional unit cell structures of bulk silicon and presents the Callaway-Holland 

approach for the prediction of the thermal conductivity from phonon dispersion.  Here the influence of the 

acoustic and transverse dispersive branches on thermal conductivity is identified as well as the relative 

contributions of the boundary, Umklapp and impurity scattering terms.  Section 3.3 considers unit cells of 

NPCs. It first presents supercell lattice dynamics calculations and analysis, and then covers the 

corresponding thermal conductivity predictions and an examination of the role of dispersion under a state 

of dominant boundary scattering. In section 3.4, conclusions are provided followed by a brief outlook on 

the promise of repeating the present study on larger unit cells as well as of using these cells as building 

blocks for the development of nanoscale thermal waveguides, a key component in a future device based 

on phononics.  
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 Bulk Silicon 3.2

3.2.1 Primitive Cell: Structure and Lattice Dynamics 

This study focuses on silicon-based NPCs, however to understand the underlying physics of wave 

dispersion and scattering we must first consider the most basic lattice forming the material’s atomic 

structure, that is, the lattice described by a primitive cell.  A bulk silicon primitive cell contains two base 

atoms embedded in a face-centered cubic (FCC) structure.  A choice of primitive cell lattice vectors forms 

a basis with a common angle of 60 degrees; here the length scale of interest is that of the atomic 

separation distance, ap = 0.38 nm (Figure 3.1a).  It is convenient (for treating the bulk material and later 

when we consider the PnC lattice) to extend this primitive cell along these axes to form an eight-atom 

conventional cell which is cubic in shape.  Here the lattice vectors are redefined as an orthogonal basis 

with a conventional cell lattice constant of a  = 0.54 nm (Figure 3.1b). Figure 3.1c displays a cut along the  

 

Figure 3.1: Phonon dispersion of silicon: (a) 2-atom primitive cell and corresponding lattice 
vectors, (b) 8-atom conventional unit cell and corresponding orthogonal lattice vectors, (c) a 
slice through the silicon crystal (001) plane with the orthogonal coordinate system shown and 
the Γ-X direction labeled, (d) FCC Brillouin Zone and symmetry points, (e) bulk dispersion 
(based on primitive cell).  



www.manaraa.com

58 
 

 

 
 

direction of the planes of a conventional cell. The Brillouin Zone of the FCC structure is a truncated 

octahedron (Figure 3.1d). For our lattice dynamics and subsequent thermal conductivity calculations in 

this section we focus on the Γ-X wavevector path bordering the edge of the irreducible FCC Brillouin 

Zone (Figure 3.1d).   

The phonon dispersion of isotropic silicon is formulated utilizing the General Utility Lattice Program 

[35) (details of the lattice dynamics formulation are available at Refs. [36,37]).  For all cases reported in 

this paper, the three-body Tersoff potential is used for the Si-Si bonds with only the first nearest 

neighboring interactions considered [38,39].  Prior to calculating the dispersion, the energy is minimized 

at constant pressure to relax the structure and ensure stability. This is especially relevant when boundary 

edges (caused by voids when forming the NPC) are introduced. The Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) optimization method [40] is used for this purpose.  

Figure 1e displays the dispersion curves based on the primitive unit cell, i.e., the phonon band 

structure for bulk silicon, showing good agreement with measurements [41]. There are six dispersion 

branches, two pairs of which are degenerate along the Γ-X path, namely those corresponding to the 

transverse acoustic (TA) and transverse optical (TO) modes. There is only one polarization for each of the 

longitudinal acoustic (LA) and longitudinal optical (LO) modes along the same path. 

3.2.2 Primitive Cell: Thermal Conductivity 

In this study, the thermal conductivity of silicon is predicted by the Callaway-Holland model [31,32], 

as given by Eq. (3.1). This model determines the thermal conductivity k by summing over each dispersion 

branch λ an integral function evaluated over the non-dimensional wave vector q. The integrand involves 

the phonon volumetric specific heat Cp(q,λ), the square of the phonon group velocity ),( qv and the 

phonon scattering relaxation time τ(q,λ). The velocity is dotted with unit vector l, to define the direction 

of interest for the phonon transport. 
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Since we are interested in the Γ-X direction, we re-write Eq. (3.1) to incorporate the dimensional lattice 

constant, a, within the variable of integration q, i.e., 2/add κq  . The factor of 2π stems from location 

of point X within the Brillouin Zone geometry of face-centered cubic structures.  This conversion enables 

us to write the heat capacity, Cph, in Joules per Kelvin, thus we get 
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The material is assumed to be isotropic allowing for the variable of integration to be evaluated over the 

volume of a sphere and expressed as a scalar, that is, 
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This is essentially an approximation to the near-spherical shape of the first Brillouin Zone. As for the dot 

product in Eq. (3.2), this becomes .3)),(( v lκv   The final form of the Callaway-Holland 

expression for an isotropic FFC crystal along the Γ-X path (0 to 2π/a) is  
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In Eq. (3.4), the heat capacity Cph measures the energy of each phonon mode and incorporates the 

Boltzmann-Einstein distribution to account for quantum effects at low wavenumbers: 
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Here kB is the Boltzmann constant, ħ is the reduced Plank’s constant, and T is the temperature. The 

phonon group velocity is evaluated by taking the derivative of the phonon frequency with respect to the 

wavenumber: 

 .
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Finally the phonon scattering relaxation time can be broken into three components identifying the type of 

scattering mechanism: Umklapp U , impurity I  and boundary B . The inverse of these variables are 

summed via Matthiessen’s rule to give the overall scattering time:  
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The boundary scattering is dependent on the longitudinal speed of sound in the crystal, c [more 

accurately evaluated as ),( κv ], and the minimum feature length L which can be viewed as a 

characteristic length scale based on the size and distribution of boundaries, grains, voids, etc. In our 

calculation of the thermal conductivity of single crystal bulk silicon, we simply omit the B
 
term in Eq. 

(3.7) because L is effectively equal to infinite in this case. The impurity scattering is frequency dependent 

and is described by the parameter D which we obtain from the literature. Specifically, we use D = 

1.32x10-45 s3 [42].  The Umklapp scattering, which is associated with phonon-phonon interactions, is 

temperature and frequency dependent. This term is described by two parameters, A and B, which we 

obtain by fitting to measurements of bulk silicon thermal conductivity. For this we use experimental data 

reported in the literature [43,44] and attain the following values: A = 2.1e-19 sK-1 and B = 180 K (see 

Figure 3.2). With this information, and using the phonon dispersion shown in Figure 3.1d, we predict the 

thermal conductivity of single crystal bulk silicon to be 142 W/mK, close to the widely reported value of 
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148 W/mK [44]. In this paper (unless otherwise specified) we consider the material to be at room 

temperature or 300º K.   

 

Figure 3.2: Thermal conductivity of bulk silicon calculated from the Callaway-Holland model 
with fitted A & B parameters (solid line) matching empirical data [43,44] from macro-scale 
silicon (dots). Reprinted with permission from J. Phys. Ref. Data 1, 279 (1972). Copyright 1972 American 
Institute of Physics and from John Wiley & Sons, Inc.  F. P. Incropera and D. P. DeWitt, Fundamentals of Heat 
and Mass Transfer (Wiley, Hoboken, NJ, 2002). 

When we keep the boundary scattering term, the thermal conductivity drops in the manner shown in 

Figure 3.3a. Here L may be viewed, for example, as the average grain size in a bulk polycrystalline 

silicon. The graph demonstrates that when L is small (i.e., in the order of nanometers) a dramatic 

reduction in the thermal conductivity occurs. This is an obvious outcome because internal boundaries 

(such as grain boundaries) inhibit the propagation of phonons and subsequently a small value of L leaves 

very few propagating phonons to carry energy though the crystal. We refer to this as the dominant 

boundary scattering regime.  On the contrary, at large scales (i.e., L > 0.1mm) the boundary scattering 

mechanism begins to fade compared to the other mechanisms. This is deduced from Matthiessen’s rule 

(Eq. 3.7) and demonstrated in Figure 3.3a.  Furthermore, we can explicitly decompose the contributions 

of the acoustical and optical branches (as governed by Eq. (3.4), and demonstrated in Figure 3.3a), or 

even the contribution of each individual branch on its own (Figure 3.3b). We observe that for bulk silicon 
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the acoustic branches dominate the contribution to the thermal transport and the longitudinal modes are 

more influential than the transverse modes. 

 

Figure 3.3: Thermal conductivity of bulk silicon (based on primitive cell) with varying 
minimum feature length (black) over the Γ-X direction, (a) Contributions of the three 
acoustical (red) and optical branches (blue) are identified, (b) Contributions of the 
longitudinal acoustic (red), transverse acoustic (blue), longitudinal optical (green) and 
transverse Optical (purple) branches are identified. 

 

Figure 3.4: Material scattering intensity representing the influence of Umklapp and impurity 
scattering on the thermal conductivity of bulk silicon, (a) contribution of both Umklapp and 
impurity scattering (black), contribution of Umklapp scattering only (red), contribution of 
impurity scattering only (red), (b) effect of temperature for various minimum feature lengths 
L.   
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We can further investigate the scattering mechanisms within the Callaway-Holland model by looking 

directly at the role of material (Umklapp & impurity) scattering.  For this purpose, we introduce the 

material scattering intensity ratio, 

 ,) NMSNMSMS kk(kI   (3.8) 

which compares the thermal conductivity, k (calculated normally), to the thermal conductivity, kNMS, 

which is a prediction in which either one or both material scattering relaxation times are “turned off”.  

This quantity is shown for bulk silicon in Figure 3.4a, for the cases of combined and individual 

elimination of Umklapp & impurity scattering.  A high value of Ims indicates kNMS ≫ k and hence a large 

original role of the eliminated mechanism(s) in lowering the thermal conductivity. On the contrary, a low 

value of Ims indicates a low contribution of material scattering.  Consistent with Figure 3.3, at small 

minimum feature lengths L the material intensity is low due to boundary scattering dominance.  However 

as L increases, there is a rapid shift in intensity until L becomes so large that the potency of boundary 

scattering diminishes.  We note that the influence of Umklapp scattering is far superior to impurity 

scattering (according to our choices of the A, B and D parameters) although it saturates at a higher value 

of minimum feature length.  Additional insight on material scattering can be gained by varying 

temperature as shown in Figure 3.4b. Since impurity scattering is not dependent on temperature, the 

trends seen here are of Umklapp scattering alone.  When L = ∞, Umklapp scattering is dominant over 

boundary scattering at all temperatures. As L is reduced, we observe that Ims drops. This drop is most 

profound at low temperatures because Umklapp scattering weakens at low temperatures.  The curves in 

Figure 3.4b provide a quantitative view of these effects.  

Figures 3.3 and 3.4 demonstrate, in different ways, the relative contributions of boundary and 

material scattering as the minimum feature size changes. Figure 3.3 shows us specifically the role of 

boundary scattering, as a function of minimum feature length L, without explicitly addressing the role of 
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material scattering. Figure 3.3, 3.4 on the other hand provides us with an explicit indication of the role of 

material scattering as a function of the minimum feature length. According to Figure 3.3, the thermal 

conductivity starts to flatten when the minimum feature length falls below L ≈ 11 nm. From the point of 

view of material intensity, on the other hand, we observe in Figure 3.4 that the flattening starts to take 

place when the minimum feature length falls below L ≈ 5 nm. In the following section we will examine 

the behavior of NPCs with void spacing distances ranging from 2.2 nm to 3.2 nm which according to 

Figures 3 and 4 is clearly a regime where boundary scattering is dominant over material scattering. We 

will examine the effect of the PnC crystal dispersion on the thermal conductivity in this regime.  

 Silicon Based Nanoscale Phononic Crystals 3.3

3.3.1 Supercells: Structure and Lattice Dynamics 

We now turn to the main focus of this work which is silicon-based three-dimensional (3D) NPCs. The 

avenue of nanostructuring bulk silicon in order to alter the thermal transport properties was considered by 

Bux [45], although the focus there was on grain control and the introduction of particulates. While such 

an approach leads to increased scattering and hence significant reduction in thermal conductivity, it does 

not provide a means of property control via dispersion. NPCs on the other hand offer the possibility of 

reducing thermal conductivity via a combination of boundary scattering and dispersion-dependent 

coherent and incoherent mechanisms (through the introduction of additional periodicity). Consequently, 

and as mentioned earlier, NPCs can potentially serve as an outstanding candidate for thermoelectric 

materials by tuning the PnC lattice spacing to be large enough not to impede the electron transport yet 

small enough to desirably couple with the phonon transport at the atomic scale. In this paper we model a 

PnC unit cell as a supercell that incorporates all the atomic-level information of the underlying primitive 

lattice.  
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The concept of an atomic supercell has been studied by Hepplestone et al. [46] where they considered 

different reduced-dimension configurations of silicon. In their supercell lattice dynamics calculations they 

modeled bulk unit cells with a special treatment for the outer atoms to extract the configuration of the 

reduced dimension structure of interest. Gillet et al. [23] also considered dispersion calculations of 

supercells, specifically in the context of silicon-germanium quantum-dot materials. However no 

conditions, or convergence analysis, were provided for proper utilization of the supercell model.   

In this section we start with a conventional cell, as depicted in Figure 3.1b, and extend it along 

orthogonal lattice vectors to create a supercell.  The prior transition we made from the two-atom primitive 

system depicted in Figure 3.1a into the eight-atom conventional cell is necessary because it allows us to 

analyze simple cubic shapes and hence be able to conveniently insert symmetrical voids.  The side length 

N is the number of conventional cells that are extended along each direction.  For example, a N = 2 

supercell contains 8 conventional cells or 64 atoms as illustrated in Figure 3.5 in which the extended 

conventional cells are shaded. To solve for the dispersion, the lattice dynamics model undergoes 

 

 

Figure 3.5: Formation of a supercell formed from a 2×2×2 array of conventional cells.  Here 
the conventional cell contains eight atoms and is extended along an orthogonal coordinate 
system to create a sixty-four atom supercell. 
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 modifications (compared to application on a primitive cell) to incorporate the new geometry and the 

resizing of the Brillouin Zone. The Brillouin Zone decreases in size by a factor proportional to the 

difference in size between the conventional and primitive cells and also the number of conventional cells 

making up the supercell. Compared to the primitive cell, the dispersion branches of a supercell of size 

N×N×N become folded, increasing the difficulty of identifying specific branches (especially for large 

supercells). Furthermore, additional dispersion branches appear due to the increase in the cell size (and 

therefore the number degrees of freedom associated with the added atoms). However, in principle, these 

two factors do not diminish the value of the supercell band structure and complex processes for unfolding 

and explicitly handling the additional branches are unnecessary as we will demonstrate later. 

 

 
Figure 3.6: Macroscale versus NPC based on silicon, (a) macroscale continuum model 
(scalable), (b) atomistic model (discrete, scale fixed by atomic spacing). 

Upon the formation of a large supercell, we create a NPC by inserting a cubic void at the center of the 

supercell. Other void shapes and supercell symmetries may be considered, but this is beyond the scope of 

the current study. Here it is appropriate to draw an analogy with conventional macroscale PnCs [47-49]. 

Figure 3.6a illustrates an example of a 3D macroscale PnC, suitably modeled as a continuum. Such a 

model is scale-independent and hence can be used for PnCs spanning a wide range of length scales from 
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meters down to the point where the continuum hypothesis breaks down. As mentioned earlier, this class 

of PnCs is finding numerous applications across disciplines [8-16]. At the nanoscale, however, atomic-

scale phenomena cannot be neglected, and hence the necessity to model the PnC unit cell as a non-

scalable supercell that incorporates all the atomic information as mentioned above (Figure 3.6b). 

To examine the effect of inserting a void in a supercell (to create a NPC) on the phonon band 

structure, we first consider a N = 5 supercell. With no void, this supercell describes a cube of bulk silicon 

containing one thousand atoms with a side length (i.e., NPC unit cell length) of A = 2.7 nm.  It should be 

noted that N and A are related by the function: A = Na.  We now insert cubic voids (to ensure 3D 

symmetry) and consider a series of void sizes, enumerated in increments of conventional cells, (i.e., 

1×1×1, 2×2×2, 3×3×3 and 4×4×4).  This generates four unique NPC unit cells to study, each containing 

992, 936, 784 and 488 atoms, respectively.  We measure the size of the void by volume fraction vf which 

we obtain by dividing the number of removed atoms by the total number of atoms of the bulk supercell.  

 Figure 3.7 shows the lowest few dispersion branches for all these cases (for the Γ-M wavevector path 

as illustrated at the top of the figure). We can notice clearly the effect of the branch folding (as well as the 

additional branches due to the added degrees of freedom) in the vf  = 0 case. As the volume fraction 

increases, the initially degenerate dispersion branches diverge, flatten and shift in frequency at varying 

rates. Some branches shift upwards and others drop. An important observation from the point of view of 

thermal conductivity is that as the voids increase in size the slopes of the branches – the acoustic modes in 

particular – decrease, which means reductions in the group velocities and hence a lowering of the energy 

carrying capacity in the NPC as a whole. 
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Figure 3.7: Dispersion of an N = 5 (A = 2.7 nm) supercell for various volume fractions vf.  
The curves for the nominal case (Bulk, vf  =  0%) are in black and the curves for the NPC (for 
different values of  vf) are in red. The Brillouin Zone for the cubic supercell is shown. 

3.3.2 Supercells: Thermal Conductivity  

In this section we use the Callaway-Holland model to predict the thermal conductivity of NPCs of the 

type depicted in Figure 3.7. We now use a different version of Eq. (3.4) to suit our cubic PnC unit cell, 

and furthermore we arbitrarily choose to compute the thermal conductivity in the Γ-M direction (as shown 

in the top of Figure 3.7). The Callaway-Holland model for our supercell calculations is therefore as 

follows 
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where Rdof  denotes the ratio of the number of degrees of freedom in the conventional cell to that in the 

primitive cell (for silicon, Rdof  = 4), and fgs is a geometric shape factor to account for the difference in 

geometry between a sphere (which is the shape of our domain of integration) and a cube (which is the 

shape of the actual Brillouin Zone for the supercells we are considering). From our subsequent analysis, 

we find that the optimal value for fgs is 2. We note that the evaluation of the thermal conductivity in Eq. 

(3.9) involves a summation of the integrals over all dispersion branches that we obtain from the supercell 

lattice dynamics calculations. In practice all the function evaluations are executed numerically. In the 

primitive cell case, we have clearly identifiable branches to integrate over. This however is not the case 

for a supercell since there is typically a large number of branches (due to the foldings and the added 

degrees of freedom) as observed in the band diagrams displayed in Figure 3.7. Moreover, there are 

numerous crossings among these branches which from a mathematical point of view render the individual 

branch functions discontinuous. Even if we were to abandon tracking a particular branch based on its type 

and only follow each branch on the basis of its order at each κ-point, we will face numerous non-smooth 

junctures. If not accounted for, this issue will introduce significant errors during the process of numerical 

differentiation (to obtain the group velocities as given in Eq. (3.6) and consequently the supercell-based 

thermal conductivity calculations will not be accurate.  

 In order to examine the utility of the supercell lattice dynamics approach we carry out a series of 

reference calculations on cubic supercells of bulk silicon (i.e., no voids). For ease of calculation, we still 

approximate the κ-space domain of integration to a spherical volume as indicated above. As shown in 

Figure 3.8, we observe that as we increase the supercell size (represented by the value of N) and the κ- 

space sampling resolution (represented by the number of sampling points, nκ, per Γ-M wave vector 
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Figure 3.8: Thermal conductivity of bulk silicon based on bulk N×N×N supercells as a 
function of supercell size N and κ-space sampling resolution nκ. The thermal conductivity of 
bulk silicon based on a primitive cell (benchmark calculation) is shown at k = 142 W/mK 
(dashed line).  

sweep), the supercell-based thermal conductivity prediction convergences to the nominal value of 142 

W/mK that corresponds to our primitive cell-based prediction. As mentioned earlier, in evaluating the 

supercell-based thermal conductivity using the Callaway-Holland model, there will be errors stemming 

from the difficulties in handling the non-smooth junctures in the dispersion branches. There will also be 

an error in the overall prediction stemming from the difference in the shape of the integration domain 

(between a sphere and a cube). In Figure 3.8, the converging behavior for a given value of nκ suggests that 

these errors get increasingly minimized as N increases. As for the role of nκ for a given value of N, it is 

evident (also from Figure 3.8) that its increase is necessary for convergence. This is because increasing 

the κ-space resolution is equivalent to refining the step size in the numerical evaluation of the integrands 

in Eq. (3.9) which in turn leads to reducing the error in evaluating the group velocities near the branch 

crossings. It should be noted that for a given value of nκ, the κ-space resolution increases as N increases 

(because the size of the Brillouin Zone decreases). However, it is clear from Figure 3.8, that increasing N 

alone is not sufficient to achieve convergence hence both an increase in N and an increase in nκ are 
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needed. While the analysis of Figure 3.8 focuses on bulk silicon, the conditions discussed for convergence 

naturally extend to the analysis of voided supercells.  

To summarize, the concept of supercell lattice dynamics can be employed for the thermal 

conductivity prediction of NPCs only when the following conditions are met: (1) the supercell size has to 

be equal to or larger than a minimum threshold size, and (2) the wave vector sampling resolution has to 

be equal to or higher than a minimum threshold resolution. The value of these minimum thresholds 

depends on the level of convergence (and hence degree of accuracy) desired in the predictions.  

For our bulk silicon model, we observe that a minimum supercell size of Nmin = 6 and a minimum κ-space 

sampling resolution of nκ,min = 1024 steps yield a prediction that is within 1% of the nominal value of 142 

W/mK. However, for the calculations presented in the rest of the paper, we select Nmin = 4 and nκ,min = 128 

to speed up our computations, assuming that the error induced with these selections is tolerable especially 

when the PnC crystal predications are normalized with respect to the supercell-based bulk material 

predictions.  

 With regards to the scattering parameters for the NPCs analysis, we incorporate the distance between 

the voids as a representative length scale for boundary scattering. For the supercell sizes we consider in 

this work, this length scale is small compared to the mean free path associated with Umklapp scattering 

and this renders boundary scattering as the dominant nonlinear interaction mechanism (as the results of 

Figures 3.3 and 3.4 assert). As such, the accuracy level of the Umklapp scattering parameters will not 

significantly affect the values of the predicted thermal conductivity. This in turn allows us to use, as an 

approximation, experimental data for bulk silicon to fit the material-related time relaxation parameters A 

and B (as done in Section 3.2.2).  For the calculations to follow, we establish a notation for the different 

thermal conductivity quantities we obtain as listed in As expected, the small size of the NPC lattice 

spacing (and consequently L) results in a significant reduction of thermal conductivity (the colored dots in 

Figure 3.9). The inset provides greater detail for the trends for each supercell size. Clearly, the PnC 
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thermal conductivities are lower than the corresponding bulk silicon with boundary scattering; 

furthermore, the slopes decrease as the value of A increases which is attributed to the change in dispersion 

as the void size increases.  An exponential function, 

 

.  As a reference, we first calculate ݇஻ௌ
஻/௉௥௜௠, which is the primitive cell-based thermal conductivity of 

bulk silicon with boundary scattering  

Table 3.1: Thermal conductivity calculations terminology for different cases studied. 

  Primitive  Supercell 

  Bulk  Bulk (No Voids) PnC (Voids) 

No Boundary Scattering  ݇ே஻ௌ
஻/௉௥௜௠  kே஻ௌ

஻/ௌ஼  kே஻ௌ
௉௡஼/ௌ஼ 

Boundary Scattering  ݇஻ௌ
஻/௉௥௜௠  k୆ୗ

஻/ௌ஼  k஻ௌ
௉௡஼/ௌ஼ 

 

incorporated, and normalize this quantity using ݇ே஻ௌ
஻/௉௥௜௠, which is the prediction for a bulk single crystal  

(i.e., no boundary scattering included). The purpose of the normalization here is to remove errors 

stemming from the supercell analysis (see Figure 3.8).  The result, which is similar to Figure 3.3, is 

plotted as a function of L in Figure 3.9. We then consider several NPCs with different unit cell sizes, A = 

2.2, 2.7 and 3.2 nm (corresponding to N = 4, 5 and 6 respectively), and different void volume fractions. 

Here, the minimum feature length L is determined to be the distance between adjacent voids. The 

supercell-based thermal conductivity predictions for these configurations, ݇஻ௌ
௉௡஼/ௌ஼, are normalized with 

respect to ݇ே஻ௌ
௉௡஼/ௌ஼ (the same quantity with no boundary scattering incorporated) and also plotted versus L 

in Figure 3.9. 

As expected, the small size of the NPC lattice spacing (and consequently L) results in a significant 

reduction of thermal conductivity (the colored dots in Figure 3.9). The inset provides greater detail for the 
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trends for each supercell size. Clearly, the PnC thermal conductivities are lower than the corresponding 

bulk silicon with boundary scattering; furthermore, the slopes decrease as the value of A increases which 

is attributed to the change in dispersion as the void size increases.  An exponential function, 

 

 ,108 )(6
/

/
Ln

SCPnC
NBS

SCPnC
BS ex

k

k   (3.10) 

is fitted to provide a quantitative assessment of this role that the dispersion plays (under conditions of 

boundary scattering dominance). We did not investigate larger NPC unit cells due computational 

limitations. However, we expect the trends shown in the inset to remain bounded from above by the 

thermal conductivity of the bulk material with boundary scattering.  

 

 

Figure 3.9: Primitive cell-based thermal conductivity calculations for bulk silicon with 

boundary scattering ࡿ࡮࢑
 normalized with respect to the same with no boundary scattering ࡯࢘ࡼ/࡮

ࡿ࡮ࡺ࢑
 and supercell-based thermal conductivity calculations for the NPCs ,(black curve) ࡯࢘ࡼ/࡮

with boundary scattering ࡿ࡮࢑
 for  A = 2.2, 2.7 and 3.2 nm normalized with respect to the࡯ࡿ/࡯࢔ࡼ

same with no boundary scattering ࡿ࡮ࡺ࢑
 The red and blue dots are obscured  .(colored dots) ࡯ࡿ/࡯࢔ࡼ

by the green dots.  Inset provides a closer view of the data points for the NPC.  The exponent 
n from the exponential fit of Eq. (3.10) is provided for the various A values. All supercell 
calculations were obtained using a κ-space sampling resolution of nκ = 128. 
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The thermal conductivity predictions of the NPCs, with ሺ݇஻ௌ
௉௡஼/ௌ஼ሻ and without ሺ݇ே஻ௌ

௉௡஼/ௌ஼ሻ	boundary 

scattering, are shown as a function of volume fraction in Figure 3.10.  Here, the plots are normalized with 

respect to the prediction for bulk silicon based on a supercell without (Figure 3.10a) and with (Figure 

3.10b) boundary scattering incorporated, i.e., with respect to ݇ே஻ௌ
஻/ௌ஼  and ݇஻ௌ

஻/ௌ஼ , respectively.  The purpose 

of the normalizations is to again remove the errors stemming from the supercell analysis, but also to allow 

us to isolate the effect of dispersion in the thermal conductivity trends. For the case including boundary 

scattering and normalized with respect to the no-boundary scattering bulk silicon predictions (the bottom 

curve in Figure 3.10a), an increase in volume fraction induces a rather profound reduction in thermal 

conductivity.  The dominating cause of this behavior is the decreasing minimum feature length which is 

the distance between the voids (this distance decreases as the void size increases for a fixed value of A).  

On the contrary, for the case where boundary scattering is not considered, and again the normalization is  

 

Figure 3.10: Supercell-based thermal conductivity calculations for the NPCs without 

boundary scattering ࡿ࡮ࡺ࢑
ࡿ࡮࢑ and with boundary scattering (solid black) ࡯ࡿ/࡯࢔ࡼ

 dashed) ࡯ࡿ/࡯࢔ࡼ
black), both normalized with respect to a supercell-based thermal conductivity calculation for 

bulk silicon with (a) no boundary scattering ࡿ࡮ࡺ࢑
 incorporated or with (b) boundary ࡯ࡿ/࡮

scattering incorporated ࡿ࡮࢑
 Three supercell sizes, A = 2.2, 2.7 and 3.2 nm, are analyzed .࡯ࡿ/࡮

with varying volume fractions.  Insets provide a closer view of the two sets of curves in each 
subfigure.  Arrows are included to refer to observed size effects (positive and negative). All 
supercell calculations were obtained using a κ-space sampling resolution of nκ = 128. 



www.manaraa.com

75 
 

 

 
 

with respect to no-boundary scattering bulk silicon predictions (top curve in Figure 3.10a), the reduction 

in thermal conductivity is dictated by the phonon dispersion alone. We note that the reduction in this case 

is moderate compared to the lower curve in the same figure. In Figure 3.10b, the bottom curves also shed 

light on the effect of dispersion because it displays results incorporating boundary scattering that are 

normalized with respect to bulk silicon predictions in which boundary scattering is also incorporated. 

Hence these curves describe the isolated effect of dispersion in the presence of boundary scattering. They 

show an appreciable effect although, as expected, much less than what is observed in the lower curves in 

Figure 3.10a (noting the logarithmic axes). The top curves in Figure 3.10b are included for completeness. 

We note that for the case of incorporation of boundary scattering in Figure 3.10a, a decrease in unit 

cell size (from A = 3.2 nm to A = 2.2 nm) leads to a reduction in the thermal conductivity at  vf = 12.5%. 

This is indicative of a classical size effect (where the thermal conductivity decreases with decreasing 

size). On the other hand, when only dispersion is considered, i.e., the top curves in Figure 3.10a, we 

observe an increase in the thermal conductivity for the same decrease in unit cell size at the same volume 

fraction. This suggests that when dispersion is considered in isolation of boundary scattering, a negative 

size effect emanates. This conclusion is also supported by the bottom curves in Figure 3.10b where the 

effect of dispersion has been isolated in the presence of boundary scattering and, furthermore, is 

consistent with the slopes trend shown in the inset of Figure 3.9.  

Finally, the relationship between material scattering intensity and temperature of the NPCs and bulk 

silicon (both with boundary scattering incorporated) is shown in Figure 3.11. Here we consider NPC 

supercells with a size of N = 6 where the red, blue and green solid lines correspond to a void size of 

2×2×2, 3×3×3, 4×4×4 (in units of number of conventional cells) or a volume fraction of 3.7, 12.5 and 

29.6% respectively.  The dashed lines correspond to bulk silicon modeled also using a supercell with a 

size of N = 6. For both the solid and dashed lines three different values of minimum feature size are 

incorporated: L = 4af, 3af and 2af. For the NPCs these values of L represent the distance between the 
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voids, whereas for the bulk material these values of L are imposed (and can be thought of, for example, as 

average grain sizes in a polycrystal). We recall from Figure 3.4b how the temperature-dependent role of 

material scattering fades away as the minimum feature size is decreased. Figure 3.11 shows that the 

deterioration of this role intensifies in a NPC, an outcome that can only be attributed to the effect of 

dispersion.  

 

Figure 3.11: Material scattering intensity versus temperature for NPCs (solid lines) and bulk 
silicon (dashed lines) for three different values of L. For the NPCs, a supercell of size N = 6 is 
used and L is incorporated as the distance between the voids. For comparison, the same 
supercell size and the same values of L are incorporated in the bulk silicon predictions. All 
calculations were obtained using a κ-space sampling resolution of nκ = 128. 

 Conclusions 3.4

In this paper we analyzed the concept of supercell lattice dynamics as a tool for the characterization 

of the thermal conductivity of NPCs on the basis of the Callaway-Holland model. Using a supercell of 

bulk silicon as a reference problem, we have shown that the thermal conductivity prediction converges to 

the value obtained using the primitive cell when (1) the supercell size N increases, and (2) the κ-space 

sampling resolution (represented by nκ) increases. The minimum chosen value of each of these parameters 

collectively determines the extent to which the prediction is representative of the properties of the 

underlying lattice model. 
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Upon investigating the effects of boundary and material scattering in bulk silicon using primitive cell 

lattice dynamics, we employed our supercell-based approach towards the analysis of NPCs in sizes in 

which the dominant incoherent mechanism is boundary scattering. First we demonstrated that the phonon 

band structure of a NPC supercell is significantly different from that of a corresponding bulk material 

supercell. We then showed that under conditions of dominant boundary scattering, the dispersion of the 

NPC clearly plays a role in reducing the thermal conductivity – although most of the reduction is 

attributed to the boundary scattering itself as expected. Moreover, this role, when viewed in isolation, 

causes a negative size effect in which the thermal conductivity increases, rather than decreases, with 

reduction in PnC unit cell size.  

 

Figure 3.12: PnC waveguides, (a) conventional macroscale PnC waveguide, (b) NPC 
waveguide. The white arrows indicate targeted direction of confined phonon energy transport. 

Future work will extend the current methodology to larger NPCs, as this would be advantageous for 

the thermoelectrics application and also more amenable to mass fabrication. As the value of A increases, 

the Umklapp scattering mechanism will become increasingly important (up to a length scale in the order 

of the mean free path). In such a regime a combination of boundary and Umklapp scattering will 

vigorously contribute to reducing the thermal conductivity, and the latter will compete in its effect with 

the reduction caused by the coherent transport mechanism. The nature of “coherent-incoherent” 

competition will be affected by the dispersive properties of the NPC and the ambient temperature. Once 

this mixed-scattering regime for NPCs is elucidated, it will be possible to fruitfully apply current concepts 
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in macroscale PnCs towards thermal transport. For example, one can create a NPC waveguide as 

illustrated in Figure 3.12 in order to confine and steer the path of heat flow in a favorable manner in 

devices. This concept would represent an analogy to the macroscale PnC waveguide which is used to 

channel acoustic or elastic waves [8,50-52]. Other similar adoptions may also be done in the broader 

context of the emerging field of phononics.  
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 Abstract 4.0

Thin-films composed of dielectric materials are attracting growing interest in the solid state physics 

and nanoscale heat transfer communities. This is primarily due to their unique thermal and electronic 

properties and their extensive use as components in optoelectronic, and potentially in thermoelectric 

devices. In this paper, an elaborate study is presented on silicon thin-films ranging from a few nanometers 

in thickness to very thick bulk-like thicknesses. Full lattice dynamics calculations are performed 

incorporating the entire film cross section and the relaxation of the free surfaces. The phonon properties 

emerging from these calculations are then incorporated into Callaway-Holland models to predict the 

thermal conductivity and other phonon transport properties. A rigorous curve fitting process to a limited 

set of available experimental data is carried out to obtain the scattering lifetimes. Our results demonstrate 

the importance of proper consideration of the full thin-film dispersion description and provide insights 

into the relationship between thermal conductivity, film thickness and temperature. 

 Introduction 4.1

 The study of heat transfer in nanoscale materials is a rapidly growing area of interest [1-6]. The 

concept of phonon engineering, or the manipulation of phonon wave propagation, provides promising 

opportunities to design materials with unique thermal transport properties. Phononic crystals (PCs) or 

periodic composite materials use their geometric patterning as a mechanism to scatter waves among the 
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intervallic physical boundaries. Numerous applications for PCs have been studied at the macroscale such 

as waveguiding and focusing of elastic and acoustic waves, vibration minimization, sound collimation, 

frequency sensing, acoustic cloaking, acoustic rectification and opto-mechanical waves coupled with 

photonic devices. The application of phononic crystals at the nanoscale, i.e., nanoscale phononic crystals 

(NPCs), is emerging as a promising approach towards the development of materials with superior thermal 

transport properties [7-15]. With recent progress in nanoscale fabrication techniques as well as improved 

modeling and computational capacity, the capability to engineer these nano-structured materials is being 

realized. It is feasible that the reduction in thermal conductivity due to scattering from NPCs may not 

have a significant impact on the scattering of electrons (due to wavelengths of different magnitudes) 

leading to a favorable outcome for thermoelectric materials [16-18]. 

 In general, studies concerned with thermal transport properties of PCs need to adequately address the 

treatment of (1) the phonon dispersion and (2) the nonlinear scattering which involves phonon 

interactions with other phonons, geometrical boundaries and material impurities. Often the bulk properties 

of a material are utilized as an approximation for the dispersive and/or scattering properties when 

modeling nanoscale devices [13-15,19]. In these studies it is assumed that the minimum feature size is 

inherently larger than the dominant wavelengths.  However as fabrication techniques allow for smaller 

devices, the minimum feature size encroaches on the length of the propagating waves making the bulk 

dispersive and scattering approximations ambiguous. 

 While NPCs can be realized in 3D, i.e., by introducing a 3D array of inclusions or holes into a bulk 

medium (as done in Chapter 3), it is more practical to have it realized in 2D, i.e., by patterning a thin-film 

or a slab [13-15]. Resorting to a 2D framework is also necessary for the realization of the pillared 

structure concept presented in Chapter 5.  However, before we investigate a 2D PNC or a 2D NPM, it is 

essential to fully develop the modeling and analysis tools for a uniform, unpatterned thin-film. This paper 

focuses on predicting the full dispersion behavior and thermal conductivity of standard silicon thin-films. 
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The examine of a thin-film is rather tractable due to its geometrical simplicity and known minimum 

feature size which, for uniform and homogeneous materials, is defined only by the film’s finite thickness. 

In addition, the computational capability to obtain the full dispersion of relatively thick films and the 

availability of empirical thermal conductivity measurements enable a complete end-to-end study. To 

determine the thermal conductivity of dielectric materials, analytical models such as the Callaway-

Holland formulation [20,21] can be employed. In this calculation, the dispersion characteristics determine 

the phonon modal contribution to thermal transport. This formulation requires the use of nonlinear wave 

scattering approximations which in in this work we obtain by rigorous multi-level curve fitting of 

empirical data.  

 To determine the dispersion curves of a thin-film, lattice dynamics (LD) [22,23] is employed on a 

narrow finite strip of the thin-film, which when extended periodically along the in-plane x- and y- 

directions forms a 2D thin-film. This is an improvement over the two-atom primitive cell bulk dispersion 

(a 3D representation of bulk mediawithout any consideration of the finite surfacescommonly used in 

the Callaway-Holland and other similar formulations) since it incorporates the out-of-plane finiteness of 

the material and the corresponding restrictions of the boundaries. Furthermore, fitting nonlinear scattering 

parameters onto temperature-dependent experimental measurements of thin-films enables thickness 

dependent phonon-phonon nonlinear scattering parameters to be incorporated.  This is an improvement 

over a commonly used approach (which we will refer to as the conventional approach) that uses constant 

parameters that are fitted only to bulk dispersion data.  In these past studies, some fitting models are 

utilized that incorporate surface roughness and specular/diffuse reflections to accommodate interactions at 

the boundaries [19,32]; however these studies were not based on full dispersion calculations.  Other thin-

film studies have taken the approach to incorporate a full dispersion model (although with some 

simplifications in the interatomic potential) [34,35] in the prediction of thermal conductivity, however 

these depended on bulk scattering properties of the material.  
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 With our modeling methodology, we can investigate the limits for when the use of bulk dispersion in 

the prediction of the thermal conductivity of thin-films is appropriate. In addition, this work identifies an 

implied size effect in which the influence of finite boundaries, and thus the thermal conductivity, plays a 

significant role on the dispersion and nonlinear phonon-phonon scattering; shedding light into the length 

scales in which the minimum feature size becomes relevant within NPCs or reduced dimension 

nanostructures in general. A comprehensive understanding of the dispersion and nonlinear scattering 

properties of thin-films will enable further studies of NPCs when in-plane periodicity is introduced, as 

well as the NPMs studied in Chapter 5.  

 In this paper, Section 4.2 provides a thorough overview of the crystalline structure of silicon thin-

films and its dispersion properties. The difference in dispersion between bulk and thin-film silicon are 

identified and compared as a function of thickness. Section 4.3 provides an overview of the Callaway-

Holland formulation to predict the thermal conductivity of bulk silicon (i.e., a 3D material with indefinite 

extensions in all directions). A brief derivation is then presented which modifies the existing formulation 

to accommodate the finite nature of thin-films (i.e., a 2D material with a finite out-of-plane extension). In 

Section 4.4, the thermal conductivity of various thin-films is computed for both the bulk-based and true 

thin-film dispersion models. The nonlinear scattering parameters for both methods are fitted to empirical 

data for various thicknesses and temperatures. Upon comparison, it is shown that improvements in the 

prediction of the thermal conductivity can be realized when incorporating the full dispersion and 

thickness-dependent scattering fitting parameters to empirical data. In Section 4.5, conclusions are 

provided followed by a brief outlook and implications of this work on thin-film-based nanoscale 

phononic materials (NPMs) in Chapter Error! Reference source not found.. 
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 Phonon Dispersion in Thin-films 4.2

 This study focuses on the wave propagation in silicon based thin-films with a thickness less than one 

micron. As a result, when modeling wave propagation at this scale the discrete atomic structure needs to 

be considered. Crystalline silicon contains a two-atom primitive basis that is extended along a face-

centered-cubic (FCC) lattice structure.  In Figure 4.1 (left), the two-atom primitive basis and 

corresponding Brillouin Zone can be seen (with a lattice constant a = 0.54nm). The lattice vectors (red 

arrows) are non-orthogonal in nature which results in a Brillouin Zone that is a truncated octahedron. The 

reciprocal lattice vectors (blue lines) indicate the base coordinate system within the near-spherical 

Brillouin Zone.  The ГX direction, which is the direction of propagation considered in this study, is 

identified (dotted orange line). When forming a supercell (in this case a narrow unit strip to represent the 

dynamics of a thin-film, it is convenient to extend the crystalline structure along an orthogonal basis. As a 

result a cube is drawn around the primitive cell shown in light blue in Figure 4.1 (left) and filled forming 

an eight-atom conventional cell with a simple cubic (SC) lattice type in Figure 4.1 (center). Here the 

lattice (red arrows) and reciprocal lattice (blue lines) vectors are now orthogonal forming a cubic 

Brillouin Zone.  Although this is not the most basic representation of the crystalline structure, the 

dispersion and subsequent phonon transport predictions are still representative of the material behavior 

[33].  When investigating thin-films, the periodicity of the out-of-plane direction (z) is truncated forming 

a two-dimensional material. The crystalline structure for thin-films of various thicknesses is established 

by stacking M conventional unit cells in the out-of-plane direction forming a finite strip of thickness Az. 

The in-plane (x, y directions) lattice vectors are maintained to form a thin-film material that is infinite 

along these directions (Figure 4.1 right). The absence of periodicity along the out-of-plane direction 

creates a two-dimensional square (rather than cubic) Brillouin Zone. 
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Figure 4.1: The silicon crystalline structure for: primitive bulk (left), conventional bulk 
(center) and conventional thin-film (right). The crystal lattice vectors are shown with red 
arrows for lattice constant a. The encompassing Brillouin Zone shape for each type is 
outlined with the Г and X high symmetry points labeled and the reciprocal lattice vectors are 
shown in blue. For the case of the thin-film, the Brillouin Zone is two-dimensional in shape 
and the finite thickness is defined by Az, which is determined by the number of M stacked 
conventional cells; here M=5. 

 The phonon dispersion of silicon is formulated utilizing the General Utility Lattice Program [24]. For 

all cases reported in this paper, the three-body Tersoff potential is used for the Si-Si bonds with only the 

first nearest neighboring interactions considered [25,26]. Prior to calculating the dispersion, the energy is 

minimized at constant pressure to relax the structure and ensure stability. This is especially relevant near 

the boundary edges at the film top and bottom surfaces. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

optimization method [27] is used to accommodate these free boundaries.   
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Figure 4.2: Silicon phonon dispersion for both thin-film (red) and bulk (bulk) for 1×1(×M) 
supercells. Note the differences in degeneracy and the curvature of the acoustic branches as 
the out-of-plane dimension (M) is increased. 
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 As the thin-film thickness increases, more atoms must be considered to form a unit cell of the lattice 

resulting in an increased number of dispersion branches. Figure 4.2 illustrates the complexity of the 

dispersion as the thickness increases ranging from the thinnest allowable of Az = 0.54nm in Figure 4.2 

(one conventional cell or M = 1; Figure 4.2a) up to Az =10.80nm (M = 20; Figure 4.2d). When comparing 

dispersion of 3D extended bulk (i.e., bulk supercells with the same geometrical arrangement) with 2D 

thin-films, differences occur due to the elimination of out-of-plane periodicity and the wave interaction 

with finite boundaries. In this illustration, we directly compare the dispersion between extended bulk 

(black) and thin-films (red) for a 1×1(×M) crystalline supercell.  We note that for all thicknesses, the 

general dispersion trend is maintained and most of the branches are clumped in a similar manner between 

both the bulk and thin-film cases. We also note that the folding that appears is due to the conventional 

unit cell being larger than a primitive cell (which is acceptable for the upcoming thermal conductivity 

calculations since these are just alternative representations of the same material). For very thick films, the 

dispersion resembles that of the extended bulk with the noted key exceptions: (1) broken degeneracy and 

a general reduction in frequency among most branches, (2) the slope of two acoustic modes of the thin-

film lies outside from the primary cluster of the dispersion branches, (3) the magnitude of the two highest 

optical branches extends above of the cluster of dispersion branches creating a new maximum frequency, 

which is a result of the surface relaxation, and finally (4) the out-of-plane acoustic branch nonlinearity 

near the  point.  

 As previously mentioned, there are significant differences in the acoustic branches of bulk and thin-

film dispersion.  This is especially relevant near the  point, i.e., the long wave lengths which play an 

important role in thermal transport.  This can be first illustrated in Figure 4.2a where we identify the 

longitudinal acoustic (LA) and transverse acoustic (TA) modes for bulk silicon.  Here the LA mode is 

along the x-direction (X) with the degenerate TA modes propagating with motion in the y- and z-

directions.  This degeneracy occurs because of the 3D nature of the geometry.  Upon comparison with the 
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thin-film dispersion, we notice that the degeneracy of the TA modes no longer exits and we redefine the 

z-direction mode as ZA or out-of-plane acoustic mode.  This mode exhibits a nearly flat slope near the  

point indicating a zero group velocity, which is a characteristic of long-wave plate-like motion.  As the 

film thickness is increased (from Figure 4.2b to 2c to 2d), unique traits occur for each acoustic branch.  

For the ZA mode, the flat slope near the  point becomes less pronounced and eventually converges with 

the LA branch.  The LA branch on the other hand becomes highly nonlinear over a specific thickness 

range before converging with the properties of the ZA branch.  Finally, the TA branch remains linear with 

its slope converging to the TA value of the bulk dispersion.  

To further illustrate this phenomenon, Figure 4.3a displays the trends of the three acoustic branches 

across various thicknesses when q ≤ 0.003 (where the normalized Brillouin Zone boundary is defined by 

qmax = 0.5). We find that as the thickness increases, the second branch converges or ‘locks’ onto the bulk 

acoustic branch (dotted lines), inferring that this in-plane transverse mode is less influenced by the film 

boundaries at larger thicknesses and at a prescribed thickness threshold has achieved some traits of bulk- 

like dispersion. Figure 4.3b more clearly illustrates the convergence trends across various thicknesses at a  

 

Figure 4.3: Acoustic mode convergence for silicon thin-films with increasing thickness at 
very low wavenumbers (left).  Note the ‘locking’ with bulk values for the second acoustic 
branch for increasing film thicknesses; an expanded view for small thicknesses is shown 
(right).  Here LA, TA and ZA are the acoustic longitudinal, transverse and out-of-plane 
waves, respectively. 
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small wavenumber value of q = 0.5x10-3. We see that the ZA branch grows steadily at low thicknesses, 

and the LA branch at small thicknesses converges to a constant value however does not lock with that of 

the bulk medium.  For larger thicknesses, the first and third acoustic branches converge, at short 

wavelengths, to form a degenerate branch. 

 Thermal Conductivity, 2D and 3D Materials 4.3

 Predicting the thermal conductivity of bulk silicon dispersion (based on a primitive cell) utilizing the 

Callaway-Holland model is well documented in literature [20,21]. The formulation consists of three 

components: the specific heat Cph, the group velocity vg and time scattering parameters τ; each of which 

are related to the dispersion where κ and λ are the phonon wave vector and polarization branch, 

respectively (eq. 4.1). The thermal conductivity is computed by integrating these phonon properties across 

the volume of the Brillouin Zone along all possible wave motion directions. For the case of bulk silicon, 

the two atom face-centered cubic structure has a near-spherical Brillouin Zone with the -X path ranging 

from 0 to 2π/a. To incorporate the bulk geometry into the calculation, a prefactor is included which 

contains three components: the volume of the spherical Brillouin Zone (4πʃ κ2dκ), the average value of 

the specified direction over a spherical volume (1/3), and the normalized volume of the Brillouin Zone in 

3D space for a primitive cell (2π/a)3. This formulation is consistent with recent studies utilizing bulk 

silicon [12,15].  
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 Upon applying the Callaway-Holland model for silicon slabs, a few modifications are implemented to 

reflect the 2D nature of the crystalline structure (eq. 4.2). The length of the Х path is reduced by a factor 

of 2 to accommodate the simple cubic lattice structure of the conventional cell. In addition, the three 

components that define the multiplying prefactor of the integral now derive from a 2D system: the surface 
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of the Brillouin Zone (which is now the area of a circle, 2πʃκdκ), the average value of a specified 

direction over a circular area (1/2), and the normalized surface of the Brillouin Zone in 2D space for a 

conventional cell (π/a)2. In addition, Az appears in the prefactor to incorporate the thickness of the thin-

film.  This formulation is consistent with previous studies incorporating 2D thin-film dispersion [34,35]. 
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The heat capacity Cph (eq. 4.3) measures the energy of each phonon mode and incorporates the 

Boltzmann-Einstein distribution to account for quantum effects at low wavenumbers. Here ω is the 

phonon frequency, kB is the Boltzmann constant, ħ is the reduced Plank’s constant, and T is the 

temperature. 
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The phonon group velocity is measured by taking the derivative of the phonon frequency with respect to 

the wave number (eq. 4.4). This can intuitively be determined by taking the slope of the dispersion 

curves.  
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Finally the phonon scattering time can be broken into three major components: Umklapp τU, impurity τI 

and minimum feature size τB. The inverse of these variables are summed via Matthiessen’s rule which 

enables the stand-out variables to be dominant over the others (eq. 4.5). 
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 The Umklapp scattering term represents the phonon-phonon interactions and is therefore temperature 

and frequency dependent. This term has two fitted parameters Au and Bu which in this work we obtain 

using empirical data. The impurity scattering is frequency dependent and contains the parameter D, which 

is well established in the literature [28]. The boundary scattering is dependent on the absolute value of the 

group velocity of each phonon and the minimum feature length L. We note that this form of boundary 

scattering is an improvement over the conventional approach [12,15,20,21] which approximates all 

phonon velocities to be equivalent to the average velocity or the speed of sound in the material. For thin-

films, the minimum feature length is set to be Az. Boundary scattering is a surface process while impurity 

and Umklapp are volumetric phenomena. 

 Thermal Conductivity of Silicon Thin-Films 4.4

 We now turn to the main focus of this work where the thermal conductivity of silicon thin-films is 

determined by three formulations: 1) the conventional model which incorporates bulk dispersion and bulk 

(i.e., constant) scattering parameters, 2) an enhanced model which utilizes bulk dispersion and thin-film 

(i.e., thickness adjusted) scattering parameters, and 3) the proposed model which incorporates both thin-

film dispersion and thin-film scattering parameters.  

 In the conventional model, the fitting parameters of Au and B are obtained using empirical thermal 

conductivity data for bulk silicon across a wide temperature range. The thin-film thickness in this model 

appears only in the boundary scattering term in Eq. (4.5); otherwise the calculations are performed using 

Eq. (4.1) and use of bulk dispersion. This approach is consistent with previous work [12]. The enhanced 

model contains a better approximation for the nonlinear Umklapp scattering parameters by utilizing 
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empirical thermal conductivity measurements of actual thin-films at various temperatures. This model 

also utilizes bulk dispersion and the Callaway-Holland approach outlined in Eq. (4.1). The available data 

limits the fitting to a series of thicknesses of Az = 20, 30, 50, 100, 420 and 3000nm [29-31]. The Umklapp 

parameters Au and Bu are fitted for each thin-film thickness and their thermal conductivity is plotted vs. 

temperature in Figure 4.4. Here the available empirical measurements are plotted with square markers.  

 

Figure 4.4: Thermal conductivity of thin-films across various thicknesses and temperatures 
with square markers indicating empirical data. Dashed lines (top) are the Callaway-Holland 
predictions using the bulk dispersion approximation while the solid lines (bottom) utilize the 
full dispersion and incorporates the Callaway-Holland model with a finite thickness. The 
Umklapp parameters, A and B, were fitted for each thickness across a temperature range 
centered at T = 300K utilizing the empirical data which are drawn as filled markers.  
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Given that the aim of this study is to fit around a constant temperature of T = 300K, only the filled 

markers in Figure 4.4a were incorporated for each film thickness when fitting the scattering parameters. 

This required discretion by the authors to best incorporate the available data around 300K. For example, 

the film thickness of Az = 100 nm utilized empirical data between 150K and 450K to enable a consistent 

transition between Az = 420 and 50 nm which had limited data below and above T = 300K respectively. 

The final scattering parameters as well as the temperature ranges considered for each curve fitting is given 

in Table 4.1. 

 

Table 4.1: A & B parameter values selected for each thin-film thickness. 

Thermal Conductivity Fitting over Temperature 

Thickness, Az 
(nm) 

Temp Range, T 
(K) 

Bulk Au 
(s/K) 

Bulk Bu 
(K) 

Thin-film Au 
(s/K) 

Thin-film Bu 
(K) 

Bulk, (Az = ∞) 200 – 400 2.026e-19 177 2.026e-19 177 

3000 120 – 300 2.469e-19 277 n/a n/a 

420 150 – 320 3.939e-19 385 6.984e-19 170 

100 150 – 450 5.776e-19 801 5.235e-19 189 

50 300 – 425 8.571e-19 1001 6.602e-19 223 

30 300 – 425 1.931e-18 1333 8.086e-19 194 

20 300 – 400 3.248e-17 2463 1.165e-18 245 
      

 Next we turn to the proposed model for predicting thermal conductivity which incorporates both the 

full thin-film dispersion and the scattering parameters utilizing thin-film empirical measurements. This 

model incorporates the 2D Callaway-Holland approach outlined in Eq. (4.2). Like before, the available 

data limits the fitting to a series of thicknesses.  Figure 4.4b shows the improvement in matching the 

thermal conductivity with full dispersion.  The bulk and thin-film full-dispersion based scattering 

parameters are identified in Table 4.1. Upon comparison, we find that the proposed model contains a 

better fit with the empirical data across a wide temperature range. This outcome can be further illustrated 

by fitting across the full temperature range as shown in Figure 4.5. Here we select the film thickness of  
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Az = 420, 100 and 20nm which have a consistent range of data across all temperatures. We note that the 

proposed model maintains a strong improvement over the enhanced model, especially at low 

temperatures. In addition, we note that including low temperature empirical data within the enhanced 

model prevents a smooth and consistent trend between the thicknesses at higher temperatures.  

 

Figure 4.5: Thermal conductivity of thin-films (with a thickness of Az = 20, 100 and 420 nm) 
versus temperature. Here a comparison between the bulk and thin-film based dispersion 
results is shown for all available empirical data (shown as solid markers). 

 Upon resolving the fitted parameters for each film thickness, a trend can be obtained to determine the 

adjusted parameters as a function of thickness. In this case we focus on film thicknesses between 20nm ≤ 

Az ≤ 100nm which is selected due to an abundance of corresponding data over a consistent temperature 

range. The thicknesses of Az = 420nm and 3000nm are not utilized due to a shortage in empirical data and 

limited computational resources respectively. The trending equations were selected on the basis of the 

following criteria: 1) follow the general trend across the desired film thicknesses and 2) have a slope of 

zero at Az = ∞ (i.e., at large thicknesses, the thin-film becomes bulk-like and as a result the Au and Bu 

parameters do not vary). Figure 4.6 shows the Au and Bu parameters as a function of film thickness. Here 
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Figure 4.6: The fitted Au and Bu values as a function of thin-film thickness.  Trending 
equations are superimposed. 

the solid markers for the ‘bulk’ (i.e., enhanced model) and ‘film’ (i.e., proposed model) identify the 

parameters used when fitting the trending equations and use the same color scheme as in Figure 4.4.  The 

hollow markers are placed on the figure to illustrate the general trend and inaccuracies present due to the 

lack available empirical data. Although data is present for the bulk case of Az = 3000nm, it is disregarded 

in order to remain consistent with thin-film formulation. The following equations 

 

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are used to fit the data in Figure 4.6 with the constants displayed in Table 4.2.  Note that these equations 

were formulated in log-log space.  
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Table 4.2: Curve fit parameters forming the Au & Bu values for all thicknesses 

Au & Bu Parameter Fitting over Thin-film Thickness at T = 300 K 

 Parameter Au Parameter Bu 

 
m 

s/(nm K) 
n 

(no units) 
Au, ∞ 
(s/K) 

a 
(K) 

b 
(1/nm) 

c 
(K) 

d 
(1/nm) 

Bulk 965.3 4.811 -43.043 7.495 0.364 5.168 -7.165x10-5

Thin-film 9.935 1.581 -43.043 3.974 0.911 5.205 2.076x10-4

 

 Upon establishing the proper trending equation for the thickness-adjusted scattering parameters of 

silicon thin-films, we can now compute the thermal conductivity of any film thickness within the 

specified ranges.  In this case, the computations are valid between the thicknesses of 20 nm ≤ Az ≤ 100 nm 

and temperatures of 150K ≤ T ≤ 450K. Pertaining to thickness, any result beyond this range is due to 

extrapolation. Figure 4.7 shows the thermal conductivity following the three approaches as a function of 

film thickness.  The solid black line utilizes bulk dispersion and scattering parameters (conventional 

model). The figure includes measured thin-film data points which are shown as black dots. The colored 

lines in Figure 4.7 show the effects of incorporating thin-film dispersion and the thickness dependent Au 

and Bu scattering parameters. The dotted dark red line incorporates the adjusted scattering parameters 

(enhanced model) while the solid dark green line incorporates both the adjusted parameters and the 

inclusion of thin-film dispersion (proposed model). The general trend across all thicknesses can be seen 

where the thermal conductivity is greatly reduced at low thicknesses due to scattering from the film 

boundaries (i.e., the minimum feature size). At very large thicknesses, this boundary scattering term 

becomes negligible and the thermal conductivity approaches the bulk characteristics.  This effect is 

further demonstrated in Figure 4.8 where we look at the relative contributions of the different modes of 

the dispersion spectrum (identified by branch and wavenumber) to the thermal conductivity for the bulk 

(top) and thin-film (bottom) cases at various thicknesses.  Here we plot dispersion with a spectral color  
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scheme to highlight which regions of the dispersion are most significant (three left plots) as well as a 

thermal conductivity cumulative plot for increasing frequency (right).  Upon utilizing bulk dispersion 

with a boundary thickness of L = 1m, we have essentially nullified the effect of the film thickness and 

 

Figure 4.7: Computed thermal conductivity of silicon vs. thickness using the Callaway-
Holland model at two temperatures: T=300K (top) and T=150K (bottom). Thermal 
conductivity predictions using bulk dispersion with constant Au and Bu parameters (solid 
black), bulk dispersion and the thickness-adjusted parameters (dashed red), and full thin-film 
dispersion and thickness-adjusted parameters (solid green) are shown. Thin-film dispersion is 
shown to provide a noticeably improved correlation with empirical data (black dots) 
especially at small thicknesses.  
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thus obtain the response of 3D bulk-like material.  As a result, we see that the vast majority of the phonon 

transport contributing to the thermal conductivity is within the acoustic branches at low wavenumbers; 

this is consistent with another study [36] which performed a similar investigation for carbon nanotubes.  

For this system, as the film thickness decreases—and the impact of boundary scattering grows—the 

phonons with the longer wavelengths (i.e., lower wavenumbers) are more heavily impacted than the 

shorter wavelengths (i.e., higher wavenumbers).  This trend exists whether utilizing bulk dispersion (top) 

or the thin-film dispersion with proper thickness adjusted scattering parameters for three selected 

thicknesses (bottom). 

 

Figure 4.8: Color spectral plot representing the relative phonon contribution to the thermal 
conductivity for each branch and wavenumber (left three plots).  The cumulative thermal 
conductivity is shown for these three plots as a function of frequency (right).  The impact of 
increasing boundary scattering (due to limiting L for the bulk case in the top row, and t for the 
thin-film case in the bottom row) is illustrated by the shifting in color density to higher 
wavenumbers. 
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 Returning to Figure 4.7, we observe that for a temperature of T = 300 K (Figure 4.7a), the proposed 

approach predictions are seen to be highly aligned with the empirical data and hence exhibits a significant 

improvement over the results of the conventional approach. In addition, there is a slight improvement of 

the proposed model over the enhanced model within the fitted thickness range (20nm ≤ Az ≤ 100nm). 

Outside of this range (where extrapolation occurs, i.e., 20nm > Az and Az < 100nm), this improvement 

becomes more significant at very low thicknesses since the effect of boundaries on the dispersion plays an 

increased role. The inset within Figure 4.7a more closely illustrates this improvement. At lower 

temperatures, the role of including thin-film dispersion curves is further pronounced as shown in Figure 

4.7b where T = 150K. This is explained by the fact that dispersion plays a more prominent role (compered 

to Umpklapp scattering) with decrease in temperatures. 

 The improved performance of predicting the thermal conductivity at very low thicknesses outlines 

the importance of incorporating both the thin-film dispersion and thickness-adjusted scattering parameters 

within the formulation. This suggests that below a threshold thickness, bulk dispersion is no longer valid 

in predicting thermal conductivity. Figure 4.7 suggests that this minimum thickness is on the order of 15-

20nm. As for lower temperatures, incorporation of full dispersion appears to be important at a much 

broader range thickness.   

 Conclusions 4.5

In summary, the thermal conductivity of silicon thin-films was predicted via formulations that 

require the full phonon dispersion and thickness-dependent parameters for approximating the nonlinear 

phonon-phonon scattering effects.  It was found that the conventional approach of using bulk properties to 

model the thermal conductivity of thin-films can be dramatically improved by incorporating the full thin-

film dispersion and utilizing thin-film empirical data for the scattering parameters. This effort required the 

need to modify the Callaway-Holland thermal conductivity formulation to incorporate the finite 
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boundaries present within the thin-film as well as fitting techniques to acquire the thickness-dependent 

scattering parameters. It was found that the improvements of the proposed method are more significant at 

lower temperatures and in thin-films with a thickness lower than ~15-20nm. In these regimes, phonon 

dispersion plays a more significant role in determining the thermal conductivity. A comprehensive 

understanding of the dispersion and nonlinear scattering properties of thin-films will enable further 

studies of NPCs when in-plane periodicity is introduced. 
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 Abstract 5.0

 We present the concept of a locally resonant nanophononic metamaterial for the purpose of 

utilization as a thermoelectric material system exhibiting a high value of the ZT energy conversion figure-

of-merit. The proposed concept enables an inherent reduction in the thermal conductivity, which is 

desired for increasing the ZT value. Furthermore, to achieve this reduction with practically no effect on 

the electrical conductivity (which is also needed for attaining a high ZT value), we choose a 

nanophononic metamaterial configuration consisting of a thin-film with a periodic array of pillars erected 

on one or two of the free surfaces. This configuration qualitatively alters the base thin-film phonon 

spectrum due to a hybridization mechanism between the pillar local resonances and the underlying lattice 

dispersion. Using a full lattice dynamics-based theoretical model (or a high resolution finite-element-

based model for large sizes) that utilizes experimentally determined scattering constants; we explore the 

performance of the proposed material system in reducing the thermal conductivity compared to a 

corresponding uniform thin-film. The results show that with a 50-nm thick silicon thin-film (with smooth 

free surfaces), a lattice spacing of 60 nm and 80-nm tall pillars introduced on a single surface, the room-

temperature thermal conductivity drops to approximately 60% of the corresponding uniform thin-film 

value (and to approximately 50% when pillars are introduced to both free surfaces). Upon parametric 

optimization, selection of other base materials, as well roughening of the free surfaces, additional 
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reductions in thermal conductivity are expected without a significant impact on the electrical 

conductivity. Compared to thin-film nanophononic crystals or thin-film superlattices, here there are no 

holes or layers that may impede the electron transport. However, the proposed pillared structure may still 

be utilized as an augmentation to existing thin-film-based nanophononic crystals or superlattices with 

proven improvements in the ZT figure-of-merit to provide a doubling, or more, of their performance. The 

proposed concept therefore provides a promising new paradigm for high-performance, scalable 

thermoelectric materials with a configuration that is easily integrated into devices.  

 Introduction 5.1

 The utilization of nanostructured materials for control of heat transport is a rapidly growing field of 

interest [1-7]. Specifically, the manipulation of heat carrying phonons, or elastic waves that propagate and 

scatter at the nanoscale, can yield beneficial thermal properties [8]. One particular application relates to 

thermoelectric materials, or the concept of converting energy in the form of heat into electricity and vice-

versa.  In past studies, it has been proposed that nanoscale periodic patterning of dielectric materials can 

in principle be used to disrupt phonon transport in a way that has a minimal impact on electron transport. 

This is mainly due to the mismatch in the mean free path associated with the heat carrying phonons and 

that of the electrons (the latter is responsible for the electrical conductivity and is generally an order of 

magnitude smaller in size [8-11]). This ability to use nanostructuring to reduce the thermal conductivity 

without significantly affecting the electrical conductivity provides a promising avenue for achieving high 

values of thermoelectric energy conversion ZT figure-of-merit. 

 The manipulation of elastic waves in a periodic medium can be realized primarily in two distinct 

ways: 1) the utilization of phononic crystals and 2) the introduction of local resonance. The latter, which 

is proposed here for the first time for the reduction of thermal conductivity, renders the medium a 

“metamaterial”. The concept of a phononic crystal [12, 13] involves a material with periodic patterning 
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for which the lattice spacing has a length scale on the order of the propagating waves, and hence wave 

scattering and interferences occur across the patterned unit cells thus providing a unique frequency band 

structure with the possibility of band gaps. Focusing on nanoscale phonon transport, the periodic 

patterning can be realized in a variety of ways such as by the layering of multiple materials with different 

phases, as in a superlattice [14-16]) or the introduction of holes and/or inclusions [17-23]. The concept of 

a metamaterial, on the other hand, generally involves the inclusion of local resonators which enable 

unique subwavelength properties to emerge. At the macroscale (where the focus is on acoustics and 

mechanical vibrations), locally resonant periodic metamaterials have been considered in various forms, 

such as by having heavy inclusions coated with a complaint material (e.g., rubber-coated lead spheres) 

hosted in a relatively lighter and less stiff matrix (e.g., epoxy) [24], or by the presence of pillars on a plate 

[25, 26].   

 In this work, we introduce the concept of an elastic metamaterial at the nanoscale, which we refer to 

as a nanophononic metamaterial (NPM). The goal is to significantly reduce the thermal conductivity in a 

nanostructured dielectric material system and to do so without affecting other important factors, 

especially the electrical conductivity. For both functional and practical purposes, we choose silicon thin-

films as the platform material system that we use as a foundation to create a nanophononic metamaterial. 

Using a reduced-dimension material such as a thin-film already causes a reduction of thermal 

conductivity with little significant impact on the power factor,	S2ߪ  (where S is the Seebeck coefficient 

and 	ߪ is the electrical conductivity) [27-30], and is also favorable from the point of view of device 

integration. The choice of silicon is beneficial due to its wide use in the electronics industry and ease of 

fabrication; however other materials may be considered in the future. The resonators take the form of a 

periodic array of nanostructured pillars that extrude off the surface of the thin-film (on either one side or 

both sides, as practically permitted). A key advantage of this configuration is that the local resonances of 

the pillars may be tuned to interfere (or more specifically hybridize) with the underlying phonon 
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dispersion of the thin-film crystalline material in a way that lowers the thermal conductivitya very 

favorable outcome for thermoelectric energy conversion. Another important benefit to utilizing pillars is 

that the feature manipulating the thermal transport (i.e., the pillar itself) is physically outside of the 

primary flow path of the electrons (which happens in the main body of the thin film). This is another key 

advantage compared to thin-film-based nanophononic crystals (which consist of holes drilled through the 

thickness of the thin-film and hence are more likely to have a negative effect on the electrical transport) or 

thin-film-based superlattices (in which the layers may similarly cause an obstruction to the electron 

transport). Thus, with the proposed pillared nanophononic material configuration, the concern about the 

competition between coherent and incoherent thermal transport and how to elucidate the interplay of these 

two mechanisms (in order to enable a most effective thermoelectric material design), are no longer of 

critical importance. Yet, for thin-film nanophononic crystals and thin-film superlattices with proven 

improvements in ZT values, the addition of a pillared array may be utilized as an “over and above” 

augmentation to the existing structure to provide a transformative improvement in performance. 

 In the following sections we describe our experimentally-fit theoretical models for the prediction of 

the thermal conductivity. In Section 5.2, we focus on uniform silicon thin-films, and in Section 5.3 we 

cover our treatment of the pillared nanophononic metamaterial and perform a parametric study in Section 

5.4. In each section, we start by presenting our phonon dispersion models and proceed with the thermal 

conductivity prediction calculations on the basis of the dispersion curves we have as well as temperature-

dependent empirical data for silicon thin-films. In Section 5.5, we present our conclusions.  

 Thermal Transport in Silicon Films 5.2

 For this study we use silicon as our constituent material, considering that silicon has been 

extensively studied in the past both as a semiconductor and as a baseline thermoelectric material.  We 

start by examining uniform silicon thin-films in order to obtain their anharmonic scattering constants (at 
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room temperature and as a function of thin-film thickness). These scattering constants will later be used 

for the pillared thin-film models since the pillars (being external to the main cross section of the nominal 

thin-film) are in principle not expected to significantly alter the phonon scattering within the underlying 

thin-film base structure.  

 The atomic structure of bulk silicon consists of a two-atom primitive cell which is extended across a 

face-centered (non-orthogonal) lattice to form the crystal structure.  In order to create an atomic-level unit 

cell model for a uniform thin-film, and later for our pillared nanophononic metamaterial, we resort to a 

conventional cell (cc) description, which consists of eight atoms and is shaped as a simple cube with side 

length a = 0.54 nm. Due to this simple box-like structure, the conventional cell will be conveniently used 

as our building block which we will replicate along an orthogonal simple cubic lattice to generate a 

supercell for the thin-film structure, in either its uniform form or later when a pillar is added to the surface 

(or a pillar added to each of the free surfaces). For the uniform thin-film, the supercell consists of a 

vertical strip constructed by stacking M conventional cells on top of each other along the out-of-plane z-

direction. The dimensions of this supercell will be denoted by Ax×Ay×Az, where Ax = Ay = a and Az = Ma = 

t, where t is the thin-film thickness. 

 We obtain the phonon band structure for a set of uniform silicon thin-films by running lattice 

dynamics (LD) calculations [31, 32] in which the three-body Tersoff potential is used for the Si-Si bonds 

with only the first nearest neighboring interactions considered [33, 34]. We perform our LD calculations 

using the General Utility Lattice Program (GULP) [35]. Prior to calculating the phonon dispersion curves, 

the interatomic potential energy is minimized at constant pressure to relax the structure and ensure 

stability. This is especially relevant at the nominal boundary surfaces of the thin film. The Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization method [36] is used to accommodate these free 

boundaries.   
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 For the thermal conductivity prediction, we use the Callaway-Holland model [37, 38] which 

integrates the contribution of each phonon mode in each dispersion branch over a given wavevector path, 

sums over all available branches and integrates across all other directions to cover the total volume of the 

supercell’s Brillouin zone. Given that a thin-film represents a two-dimensional material (i.e., phonon 

wave motion is permitted only in the in-plane direction), the Callaway-Holland model takes the form of 
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where κ, ω, Cph, v, τ are the phonon’s wavenumber, frequency, specific heat, group velocity and scattering 

time, respectively. The specific heat, group velocity and scattering time parameters are dependent on the 

phonon dispersion, i.e.,   
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where T is temperature, kB is the Boltzman constant, ħ is the adjusted Plank’s constant, a is the lattice 

spacing, A and B are the Umklapp scattering parameters and D is the scattering impurity parameter. The 

Umklapp scattering properties accounts for the phonon-phonon interactions.  For bulk systems, these 

parameters are usually fitted to bulk empirical measurements as a function of temperature. Upon 

constricting the lattice to a 2D thin-film with finite surfaces, the bulk scattering parameters are no longer 
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valid.  As a result, the scattering parameters are necessarily fitted to empirical thin-film measurements.  

Due to the high sensitivity of these parameters to the film thickness (especially for very low thicknesses), 

we fit the parameters for a variety of thin-film thicknesses.  Due to the availability of empirical data, we 

fit for the thicknesses measuring   t = 20, 30, 50, 100, 420 nm around a temperature of T = 300K.  Figure 

5.1a shows the empirical data (marked with dots) as well as the fitted results for thin-films of various  

 

Figure 5.1: (a) Thermal conductivity as a function of temperature for various thin-films and 
(b) Umklapp scattering parameters, A and B, as a function of thin-film thickness. These 
parameters are determined by fitting the thermal conductivity predictions with the empirical 
data point shown (left).  Here the squares are measurements and the solid lines represent the 
fitted model. We find that the Callaway-Holland 2D thermal conductivity formulation well 
represents the experimental thermal conductivity values for various thicknesses and 
temperatures.  For thin-films beyond the thickness which is empirically available, we 
extrapolate (right) as demonstrated for the thickness value of t = 2.7 nm. 

thicknesses.  It is noted that due to the limited availability of data across a wide temperature range, only 

the solid dots were considered for the fitting to ensure the expected trends at T = 300K.  Upon obtaining 

the parameter values for an adequate number of thin-film thicknesses, a second level of curve fitting was 

performed to harness scattering parameters for a wide range of thin-films as shown in Figure 5.1b.  In 

preparation for investigating a pillared thin-film with pillars (which is done later), we consider a uniform 
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thin-film with a thickness of t = 2.7 nm; the selected Umklapp parameters for this thickness are marked in 

Figure 5.1b. 

 The background concerning the crystal structure and modeling of silicon, the formulation of lattice 

dispersion for thin-films, as well as the 2D derivation and calculation of thermal conductivity are 

discussed extensively in Chapters 3 and 4. In addition, the fitting process used to determine the scattering 

parameters is outlined in Chapter 4. 

 Introduction of Pillars to Form a Nanophononic Metamaterial 5.3

 We now turn to the main focus of this work which is to determine how the presence of 

nanostructured resonating pillars reduces the thermal conductivity in a thin-film.  Our baseline study 

consists of a supercell cell with a square base of 6×6 conventional cells (Ax = Ay = 3.26 nm) and a 

thickness of M = 5 conventional cells (Az = t = 2.72 nm); this corresponds to a rectangular solid 

containing of 1440 atoms. Here the top and bottom of the unit cell are free surfaces with the phonon wave 

motion only enabled along the in-plane directions.  The pillar is placed at the top of the thin-film and has 

a square base of 2×2 conventional cells (side length of D = 1.09 nm) and a height of 3 conventional cells 

(H = 1.63 nm) and itself contains 96 atoms. This geometrical configuration can be seen in Fig 5.2 (far 

right, top). 

 The phonon dispersion is shown in the same figure (Fig. 5.2) for both the uniform thin-film (far left) 

and the thin-film with the presence of the pillar (far right).  The dispersion curves themselves are colored 

in a manner that reflects the contribution of thermal conductivity for each particular branch and wave 

number.  The colors are normalized so that the branch and corresponding wave number with the highest 

contribution to the thermal conductivity is equal to one (independently for each plot). We note that per 

our previous discussion, the Umklapp scattering parameters are set for t = 2.7-nm thin-film as shown in 
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Fig 5.1b.  We sum the cumulative contribution of thermal conductivity as a function of frequency 

(center).  We note several observations from Fig. 5.2: (1) the lower branches (acoustical) contribute to a  

 

Figure 5.2: Comparison of the dispersion and thermal conductivity of uniform silicon thin-
films with the case of a thin-film with pillars.  Dispersion is colored in a manner which 
reflects the normalized contribution to thermal conductivity. We note the dramatic change to 
the dispersion and the resulting reduction in thermal conductivity, which occurs due to the 
addition of the pillar. 

significant portion of the thermal conductivity in the thin-film.  In addition, we see that the higher 

wavenumbers (contrary to the bulk case) also significantly contribute to the thermal conductivity. One 

factor to note here is that the boundary scattering term is being based on a very small value of minimum 

feature size, L, as this is set to be equal to the thin-film thickness of t = 2.7 nm. When L is very small, the 

long waves (i.e., those near the Г-point in the band diagram) are effectively eliminated and hence we get 

the low contribution at the lower end of the acoustical branches.  (2) The presence of the pillar causes a 
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series of flat locally resonant phonon modes to appear. These modes interact with the underlying acoustic 

phonons and form a hybridization of the dispersion curves; this leads to a flattening of the branches and as 

such a reduction in the group velocities and hence the thermal conductivity.   (3) We note that the acoustic 

branches (first three branches > 1THz) for the uniform case contributes approximately 40% of the thermal 

conductivity. The presence of the pillars significantly modifies both the magnitude and prominence of 

these acoustic branches, which now contributes > 50% of the thermal conductivity.  With the pillar, 

nearly 80% of the thermal conductivity is below 2.5 THz while for the uniform case this around ~70% is 

below this frequency. 

 

Figure 5.3: Dispersion curves of the thin-film, with and without pillars.  The dispersion is 
found using the atomic lattice dynamics model (left) and the continuum-based finite element 
model (right). 

 For the cases considered thus far, we have modeled the dispersion of the thin-film with pillars 

utilizing lattice dynamics. The clear benefit of LD is that it enables us to model the motions in the thin-

film and the pillars with atomic resolution, and hence enable an accurate depiction of the wave properties 
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in the nanostructured material.  Due to limited computational resources, however, this type of model is 

limited to very small sizes (roughly up to where the feature length of a supercell cell is 5 nm).  Given that 

current technologies in nanostructured manufacturing are limited to minimum feature sizes roughly an 

order of magnitude larger, we turn to a continuum-based finite-element (FE) model, albeit we pay special 

attention to the finite element resolution with respect to the number of elements per conventional cell. In 

Figure 5.3, we compare the first few branches of dispersion between the LD and FE formulation for unit 

cells with and without the pillar. For this comparison we use a supercell with identical dimensions to our 

previous case study. For the FE model, we utilize 12×12×10 elements to form the thin-film and 4×4×6 

elements for the pillar. This resolution was selected to approximately match the total degrees-of-freedom 

between the FE and LD models.  Here the model size for the FE case is 5202/4752 degrees-of-freedom 

[with/without the pillar] and 4608/4320 for the LD case.  In addition, the FE mesh was selected to ensure 

cubic elements.  We find that there are key similarities between the two models: For the uniform thin-

films we observe three unique acoustic branches, one of which is flat near the -point indicating plate-

like motion.  In addition, we see similar branch folding and degeneracy in the dispersion.  With the 

addition of the pillar, we see flat horizontal branches appear that intersect the acoustic branches. Adjacent 

to these intersections, the slope is dramatically reduced causing a lower group velocity; this occurs in the 

higher branches as well.  There are some variances however between these LD and FE models with the 

most noteworthy being the differences in slope of the acoustic branches at high wavenumbers and the 

slightly higher frequency for the optical and resonant branches of the FE model. On the other hand, the 

long wave slopes of the acoustic branches are almost identical, which provides an important verification. 

 As discussed above, the main benefit of using the continuum-based FE model for formulating 

dispersion is the ability to reduce the size of the computational model.  As a result, unlike the LD 

formulation, discretion is given to select a finite-element resolution that adequately captures, at least 

qualitatively, the nanoscale effects.  To understand the sensitivity of the FE resolution on the thermal 
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conductivity prediction, we directly compare with the thermal conductivity formulation on a series of unit 

cells utilizing both FE and LD models.  To take advantage of the relatively simple geometry, we 

vertically stack a series of conventional cells on top of each other (i.e., a 1×1 conventional cell base) 

which allows us to model relatively thick thin-films by lattice dynamics without exceeding the 

computational limitations.  These supercell ‘strips’ have a base length of Ax = a = 0.54 nm and a thickness 

of Az = t.  For each thickness, the Umklapp scattering parameters are adjusted per the curve fit technique 

in Figure 5.1 to ensure the appropriate phonon-phonon interactions are met. 

 

Figure 5.4: Comparison between the prediction of the thermal conductivity utilizing lattice 
dynamics (LD) and the finite element method (FE).  The FE resolution is described in terms 
of number of finite elements per a conventional cell (cc).  The results show that the 
performance of the FE model is independent of thickness for thicknesses between 20 and   
100 nm. Both models are based on a thin unit cell ‘strip’ of finite thickness t and periodic 
boundaries along the in-plane directions.  

 In Figure 5.4, the ratio of the thermal conductivity prediction of the FE model compared to the lattice 

dynamics model is plotted as a function of thin-film thickness. The number of elements used in the FE 

model is reported as a ratio to the number of equivalent conventional cells in the LD model.  Along the   

x-y directions (in-plane), three elements were used for each case resulting in a resolution of 3 nel/cc while 

along the vertical direction the resolution considered was 0.1 nele/cc.  We note that across a prescribed 
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thickness the relative prediction of the thermal conductivity using LD versus the FE method converges to 

a constant value and becomes relatively flat.  This enables us to directly correlate (with a ratio offset) the 

thermal conductivity by these two modeling techniques for a prescribed nele/cc resolution.  When utilizing 

FE methods it is important to ensure that the resolution is high enough to effectively capture the effects of 

the overall unit cell configuration on the general dispersion picture and subsequently on the nanoscale 

mechanism of thermal transport.  In Figure 5.5 we directly compare the reduction in thermal conductivity 

for a thin-film with and without the pillars for various element resolutions and wavenumber step sizes.  

We select a cubic supercell with a side length of  aNPM  =  3.26 nm and a pillar with a base side length of  

D = 1.08 nm and a height of H = 2.17 nm.  These dimensions were selected to enable comparison with the 

LD model where the base length is equivalent to Ax = 6 conventional cells and a pillar base and height of 

2 and 4 nm, respectively.   

  

Figure 5.5: Comparison of thermal conductivity of thin-films with and without the presence 
of a pillar utilizing FE of varying nele/cc and nκ resolutions (solid lines).  The unit cell 
dimensions of the FE are equivalent to the LD formulation (dashed lines) to enable a direct 
comparison.  Here the thin-film thickness is set to t =  3.26 nm. 

 We find that as we increase the number of nκ points or the wavenumber discretization resolution, 

which numerically improves the prediction of the Callaway-Holland model, the thermal conductivity 

converges to a constant value.  In addition, when the number of elements is increased, the reduction in 
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thermal conductivity due to the presence of the pillar also converges to constant value.  This is evident in 

Figure 5.5 as the number of elements is increased for a fixed number of wavenumber steps, nκ.  Finally, 

we note that with increased finite-element resolution, the FE model maintains a consistent trend and 

approaches the LD model.  This spurs further confidence that, for the selected resolutions, the FE model 

appears to be adequately capturing the nanoscale phonon dynamics behavior as far as the effects of the 

pillars on the overall dispersion, and hence the thermal conductivity reduction, are concerned.     

 It should be noted however that while the nele/cc resolution in Figure 5.5 is set at a level which is 

adequate, the notion of scalability (which exits in the FE treatment of macroscale low-frequency 

problems) needs to be first verified before proceeding further.  Consequently, a similar convergence study 

is applied for a thin-film with a thickness of t = 60 nm as shown in Figure 5.6; this corresponds to a base  

 

Figure 5.6: Comparison of thermal conductivity of thin-films with and without the presence 
of a pillar utilizing FE of varying nele/cc resolution and nκ resolutions (solid lines).  Here the 
thin-film thickness is set on the order of t = 60 nm. 

length of aNPM = 60 nm, pillar width of D = 20 nm and a pillar height of H = 40 nm.  Here we consider 

coarser resolutions than before, yet we observe that the reduction in the thermal conductivity has similar 

convergence trends with those shown in Figure 5.5.  Upon evaluating Figures 5.4 through 5.6, we set      
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nκ = 129 and nele/cc = 0.109 for all remaining cases within this study.  This resolution sets the base length 

of each cubic finite element to be fixed to 5nm in length. 

 Finally, we plot the full dispersion with the chosen finite element and nκ step resolutions for a thin-

film with a thickness of t = 50 nm, aNPM = 60 nm and D = 20 nm, with and without the presence of a 

pillar of H = 80nm, in Figure 5.7.  We note that upon comparing full dispersion we see a few distinctive 

traits: (1) that the maximum frequency remains consistent regardless of the extra branches present due to 

added degrees of freedom of the pillar, and (2) despite additional degrees of freedom, the thin-film with 

the pillar has a reduced thermal conductivity due to the introduction of the local resonance branches to the 

phonon spectrum and the subsequent hybridization with the underlying thin-film dispersion.    

  

Figure 5.7: Full dispersion and thermal conductivity comparison of a thin-film with (blue) 
and without (red) the presence of a pillar, utilizing the high-resolution FE model. 

 Parametric Study 5.4

 We have demonstrated the general reduction in the thermal conductivity of thin-films with the 

presence of a pillar.  We next take a closer look at how the height and spacing of the pillar on the thin-
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film surface impacts the contribution to the thermal conductivity.  Figure 5.8 (top) shows the dispersion 

of a thin-film with varying pillar height H.  For this case we utilize the parameters of t = aNPM = 60 nm 

and D = 20 nm.  We see that as the pillar height is increased the density of dispersion branches at lower 

frequencies is increased, primarily due to the lowering of the fundamental resonance frequency and its 

harmonics.  This description is illustrated in Figure 5.8 (top) by looking at the horizontal branches 

corresponding to the local resonance frequencies and their interaction with the underlying dispersion 

branches.  This effect of the local resonances takes place throughout the entire frequency spectrum and 

therefore has a significant effect on the thermal conductivity. 

  

Figure 5.8: Dispersion comparison of a t = 60 nm thin-film with the presence of a pillar of 
varying height H (top) and the computed reduction in thermal conductivity with an 
exponential curve fit to capture the trend (bottom). 
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 When evaluating thin-films with a varying pillar height, we compute the thermal conductivity 

utilizing all branches while recognizing that the taller the pillar, the more branches are available and 

incorporated. We find in Figure 5.8 (bottom) that for small pillar heights, an increase in pillar height 

causes the thermal conductivity to decrease further (in line with a lowering of the resonant frequencies), 

reaching a value of 60% of the uniform thin-film thermal conductivity. However above a particular value, 

the reduction becomes less profound, and in fact reverses, as the pillar height increases.  This may be 

attributed to the increase in coupling between the pillar motion and that of the thin-film itself, considering 

the increasing ratio of the pillar height with respect to the thin-film thickness.   

   

Figure 5.9: Computed reduction in thermal conductivity for a thin-film of t = 50 nm with a 
periodic array of pillars of varied lattice spacing, aNPM. The dashed line indicates a double 
pillar.   

 This effect can be further illustrated in Figure 5.9 where for a fixed pillar height, the lattice spacing 

aNPM (i.e., supercell length) is adjusted to vary the spatial density of the pillars erected on the thin-film.  

For the case of high lattice spacing, an increased spacing reduces the density of the pillars on the thin-film 

surface which adversely impacts the thermal conductivity reduction.  On the contrary when the lattice 

spacing is small, an reduction in lattice spacing increases the coupling between the resonator and the thin 

film and hence also adversely affects the thermal conductivity reduction. As a result, for the case of a 
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pillar height of H = 80nm (the solid black line in Figure 5.9) we see a minimum thermal conductivity 

reduction at aNPM = 70nm. 

 Finally, under the circumstances where the thin-film is suspended, the ability to implement pillars on 

both free surfaces may be realized.  As a result, we can effectively double the number of pillars present on 

the thin-film. In Figure 5.9 we find that there is an even greater reduction in the thermal conductivity, to 

50% of the uniform thin-film value, when utilizing double pillars (dashed black line).  Upon investigating 

the dispersion of the double pillar thin-films, we see in Figure 5.10 that additional branches around the 

resonant frequencies.  Although this addition has caused a further reduction in the thermal conductivity, 

the relative improvement is not as significant as adding just a single pillar. 

 

Figure 5.10: Dispersion comparison of a uniform t = 50 nm thin-film (left), with an 80 nm 
single pillar (center) and an 80 nm double pillar (right).  The first few dispersion branches are 
shown as well as the cumulative thermal conductivity as a function of frequency. 
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 Conclusion 5.5

 In this work, we investigated the concept of augmenting thin-films with nanostructured pillars as an 

approach to reducing thermal conductivity.  In principle, the introduction of the pillars renders the thin-

film a nanophononic metamaterial. We utilized both lattice dynamics and finite-element based 

formulations to model the phonon dispersion.  Upon directly comparing the frequency spectra of a thin-

film with pillars versus one without pillars, it was noted that there are key favorable changes in the 

dispersion due to the presence of the pillars.  By using the Callaway-Holland model to compute the 

thermal conductivity (utilizing phonon dispersion), we found that the predicted reduction in the thermal 

conductivity by the FE model converged to a constant offset value compared to the LD results for thin-

films with a thickness-pillar spacing on the order of ~5nm. For a larger model (in the order of 50nm 

thickness-pillar spacing), the FE results converged with increasing resolution. We note that unlike the LD 

formulation, a finite-element resolution has to be selected to ensure that the nanoscale effects are properly 

represented while staying within the bounds of available computational resources.  It was found that for 

the selected unit-cell sizes, the presence of a pillar on the thin-film enabled a noticeable reduction in the 

thermal conductivity to approximately 60% and 50% of the uniform thin-film value for a single and 

double pillar, respectively. 

 The results of this work yield a favorable outcome for thermoelectric materials.  Utilizing thin-films 

with nanostructured resonators has been shown to significantly lower the thermal conductivity without 

altering the core material and hence having a minimal effect on the electrical conductivity, leading to a 

scenario that is ripe for improvement in the thermoelectric figure-of-merit. A follow-on investigation to 

confirm our assumption that electron transport is uninhibited by the pillars is an important next step in 

analytically determining the true thermoelectric energy conversion gains from the inclusion of the pillars. 
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6 CONCLUSION  

 Summary of Dissertation 6.1

 In Chapter 1, the concept of thermoelectric energy conversion was introduced emphasizing the 

potential that this technology has in changing the way we approach common challenges in energy 

generation and heat management.  The limitations of this technology were outlined and the different 

approaches in the literature to surmount this challenging problem, at the material-level, were briefly 

reviewed. Motivated by the potential impact of a successful solution to the problem of increasing the 

values of ZT, this dissertation aims to utilize nanoscale phononic materials as a means for reducing the 

thermal conductivity with little alteration of the electrical conductivity-an outcome that will inevitably 

increase the values of the figure-of-merit. Two types of nanoscale phononic materials were studied in this 

work: 3D bulk NPCs and 2D thin-film nanoscale phononic metamaterials. The former is formed by 

drilling a periodic array of cubic voids in bulk silicon, and the latter by erecting a periodic array of pillars 

on the surface of a flat plate-like thin-film also composed of silicon. For comparison, the nominal cases of 

3D uniform bulk and 2d uniform thin-films were also investigated (as these provided bench-mark 

reference configurations to which the properties of new nanoscale phononic materials were compared). 

The remainder of this chapter introduced the tools needed and current challenges for computing the 

thermal conductivity for the various nanostructured material systems considered.  Finally, an in-depth 

literature search was provided on current research topics in thermoelectric devices, periodic materials, 

lattice dynamics and nanoscale heat transfer.  

6.1.1 Lagrangian Lattice Dynamics 

 Chapter 2 focused on the process of utilizing lattice dynamics to calculate wave propagation in a 

crystalline nanoscale phononic material.  It was noted that atomic scale dynamic motion is commonly 

modeled following Newtonian mechanics where the exerted inter-atomic forces applied on each atom are 
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balanced to form the equations of motion.  In this work, a Lagrangian mechanics-based formulation was 

implemented to simplify the formation of the equations of motion; enabling fewer force constants to 

represent the atomic interactions. In addition, this formulation enables for practical means for 

incorporating other physical phenomenon such as damping, non-linearity and truncation of periodicity.  

This method was implemented for a simple cubic lattice nanoscale phononic crystal (not based on a 

realistic constituent material) and found to be consistent with the Newtonian formulation.  As a case 

study, the phonon dispersion was generated for a supercell containing 5×5×5 atoms one of which was 

‘defected’ and set to have a higher mass.  The defect caused the phonon dispersion to exhibit a band gap 

or a frequency range where wave propagation is inhibited.  The frequency range of the band gap increased 

as the mass of the defected atom was increased in value.  The ability to control the size and location of a 

band gap at the nanoscale leads to opportunities in engineering materials with desired thermal transport 

properties. 

6.1.2 Nanoscale Phononic Crystals 

 The next natural step was to model the phonon wave propagation of a practical crystalline material-

based NPC and to compute its thermal conductivity.  For the remainder of the work in this dissertation, 

silicon was selected due to its widespread availability and potential to serve as a thermoelectric material.  

In Chapter 3, the conventional silicon unit cell was used as a building block for the creation of a 3D bulk 

NPC, and the corresponding dispersion was used to compute the thermal conductivity utilizing the 

Callaway-Holland formulation. First, however, a modeling approach had to be established since a NPC 

may only be represented by a supercell, and there are limited studies in the literature concerned with 

supercell lattice dynamics and thermal conductivity prediction. Using the primitive cell as a model for 

bulk, unpatterned silicon as a reference, the thermal conductivity was calculated for a uniform supercell 

with a cubic form factor.  It was found that the thermal conductivity of the uniform supercell converges to 
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that obtained by the primitive cell as the supercell size and wave-vector resolution are increased. With a 

thorough understanding of the dynamics and thermal transport behavior of the uniform supercell, the next 

step was to reduce the thermal conductivity by creating a 3D NPC.  This was enabled by removing 

clusters of atoms in the supercell to create a cubic void (i.e., a hole).  When comparing dispersion, a 

significant difference can be seen between a 3D uniform crystal and NPC crystal, mainly a general 

reduction in frequency and flattening of the branches occurs.  For the thermal conductivity prediction, the 

phonon scattering rate was determined by fitting with empirical bulk datawhich is a rather rough 

approximation but still useful in providing initial insights on the comparative roles of dispersion and 

Umklapp scattering. Upon investigating the contribution of each phonon branch to the thermal transport, 

it was found that the acoustic branches contribute to the majority of the thermal conductivity, even when 

these branches are flattened due to the added periodicity. In addition, the role of the material and 

boundary scattering phenomenon were illustrated, and it was observed that the dispersion associated with 

the NPC plays a noticeable role in affecting the thermal conductivity even in the presence of sever 

boundary scattering.  

6.1.3 Nanoscale Phononic Metamaterials 

 The final focus area of this dissertation investigated 2D uniform thin-films both with and without the 

presence of pillars. The latter case provided a novel application of the theory of metamaterialscurrently 

widely studied in acousticsto the problem of nanoscale phonon transport. But before this prime 

contribution is discussed further, it is noteworthy to elaborate on the modeling benefits of moving from a 

3D NPC to a 2D thin-film, regardless of the presence of pillars.  Although the 3D NPC case provided 

unique insights in modeling the thermal conductivity of supercells as well as the treatment of material and 

boundary scattering, there was an uncertainty in the model setup that was resolved upon moving to 

unvoided thin-films.  This involved the treatment of the scattering parameters which needs to be fitted to 
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empirical data.  Contrary to a 3D NPC, the thermal conductivity of thin-films has been extensively 

studied for a variety of thicknesses. This allowed us to use proper boundary scattering parameters, 

obtained directly from temperature-dependent experimental data. This advantage carried through the 

modeling of the NPM because the pillars are placed external to the main skeleton of the thin-film rather 

than in its internal body. In the following paragraphs, we provide the details of the uniform and pillared 

thin-film investigations. 

 In Chapter 4, lattice dynamics was utilized to model the wave propagation of silicon thin-films 

across various thicknesses.  The resulting dispersion exhibited traits of plate-like motion which is 

particularly visible in the acoustic branches at low thicknesses.  Due to the 2D nature of the material, the 

thermal conductivity formulation was modified to incorporate the finiteness in the out of plane direction.  

The thermal conductivity for several film thicknesses were acquired empirically and used to fit the 

phonon scattering parameters.  The thermal conductivity of the thin-film was computed in three ways: 1) 

with bulk dispersion (i.e., a primitive unit cell with just six branches) and bulk phonon scattering 

parameters, 2) with bulk dispersion and thickness adjusted thin-film scattering parameters and finally 3) 

with supercell thin-film dispersion and thickness adjusted thin-film scattering parameters.  It was found 

that incorporating thickness-dependent scattering parameters led to better predictions of thermal 

conductivity with further insights into the specific mechanisms which impact thermal transport.  Upon 

incorporating the full dispersion, there was a significant improvement in the prediction, especially for 

lower temperatures and in the thin-films of ~15-20nm or lower in thickness. 

 In chapter 5, the work with uniform thin-films was expanded to include periodic features to reduce 

the thermal conductivity.  It was determined that placing pillars on the top surface of the thin-film was 

more advantageous then creating  a 2D NPC by punching holes though thin-film due to uncertainties of 

the phonons and electrons interactions with the void surfaces.  More importantly, including pillars at the 

nanoscale enables a new class of materials called nanoscale phononic metamaterials which utilizes local 
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resonators to manipulate the propagation of phonon waves at subwavelength frequencies.  Upon utilizing 

lattice dynamics to calculate dispersion, unique branches appeared which were flat and low in frequency; 

these are attributed to the local resonating motion of the pillars.  The thermal conductivity calculations 

found that the presence of the pillars led to a ~50% reductions in thermal conductivity.  The 

computational limitations of lattice dynamics prevent this pillar study from extending beyond a film 

thickness of ~3nm; a size too small for practical manufacturing capabilities.  As a result, a finite element 

formulation was used to model thin-films with a thickness of ~50nm.  It was found that certain finite 

element mesh resolutions adequately captured the nanoscale effects and converged with the lattice 

dynamics formulation.  The finite-element prediction of the thermal conductivity with the pillars included 

was consistent with the lattice dynamics model despite the thicker thin-film. The thermal conductivity 

reduction in the 50nm-thick NPMs (predicted by the finite element models) improved as the height and 

the density of the pillars were increased.  In the case where pillars were present on both sides of the thin-

film, a further reduction to 0.35 was of the nominal thin-film value was noted. 

 Outlook and Future Research 6.2

 The idea of incorporating nanostructured materials into thermoelectrics has led to a global 

resurgence in the perusal of high efficiency solid state energy conversion.  The record breaking values of 

ZT reported for silicon nanowires and thin-films holds promise that thermoelectrics may soon be 

economical and integrated into the commercial industry.  The final hurdle that still lies ahead, however, is 

the challenge of integrating these nanostructured devices into a medium that provides efficient energy 

conversion, but that is also practical, robust and reliable.  Upon engineering materials with desired ZT 

levels, the focus needs to shift into incorporating these features into practical material and device systems 

that can be easily manufactured. 
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 One of the unique aspects of the work performed in this dissertation is the calculation of full 

supercell dispersion via lattice dynamics for the different unit cell geometries considered.  It was found 

that incorporating every dispersion branch led to a more accurate depiction of the thermal conductivity of 

the material.  One obstacle however is the limiting connection between the maximum unit cell size that 

can be analyzed and the computational resources available.  In this dissertation, unit cells on the length 

scales of ~50nm were desired (for practical manufacturing purposes), however the sheer number of atoms 

involved at this scale limited the size to >5nm.  The remedy presented utilized finite element analysis, 

which was somewhat effective in providing an indication of the phenomenological response, yet it 

certainly does not capture atomic-scale effects.  Future work should focus on the development of novel 

multi-scale modeling techniques that would allow us to capture the benefits of lattice dynamics and 

obtaining the full dispersion of an atomic-scale supercell with available computational resources. 
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